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Abstract: We present the first necessary and sufficient conditions for the existence of 
a unique perfect-foresight solution, returning to a given steady-state, in an otherwise 
linear model with occasionally binding constraints. We derive further conditions on the 
existence of a solution in such models, and provide a proof of the inescapability of the 
“curse of dimensionality” for them. We also construct the first solution algorithm for 
these models that is guaranteed to return a solution in finite time, if one exists. When 
extended to allow for other non-linearities and future uncertainty, our solution algorithm 
is shown to produce fast and accurate simulations. In an application, we show that 
widely used New Keynesian models with endogenous states possess multiple perfect 
foresight equilibrium paths when there is a zero lower bound on nominal interest rates. 
However, we show that price level targeting is sufficient to restore determinacy in these 
situations.    
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1. Introduction 

Since the financial crisis of 2007-2008, many central banks around the world have 
chosen to keep their nominal interest rate close to 0%. While in a few countries, rates 
on some assets have gone slightly negative, central banks are unable to push their target 
rate to the level a Taylor rule might suggest since agents always have the option of 
holding cash. In practice then, central banks face a zero lower bound (ZLB) on their 
policy rate, which limits their ability to provide stimulus in severe recessions. 
Furthermore, during the crisis, both households, firms and banks have hit their 
borrowing constraints, which has limited their ability to smooth out its effects. However, 
traditional approaches to understanding the behaviour of medium-scale DSGE models, 
such as perturbation, cannot capture occasionally binding constraints (OBCs), meaning 
that the profession still lacks all of the necessary tools for understanding the behaviour 
of models with OBCs. 

In this paper, we attack the problem of understanding the behaviour of models with 
occasionally binding constraints from two directions. Much as the seminal paper of 
Blanchard and Kahn (1980) both provided necessary and sufficient conditions for the 
existence of a unique solution to a linear model, and provided a practical approach for 
their simulation, we shall do the same for models with OBCs. Firstly, we provide 
theoretical results on the existence and uniqueness of solutions to such models. 
Secondly, we provide a computational algorithm for their robust, accurate and scalable 
simulation, along with a toolkit (“DynareOBC”) implementing the algorithm.2 

Our theoretical results are for perfect-foresight solutions to models that are otherwise 
linear, apart from their occasionally binding constraints. As was observed by Benhabib, 
Schmitt-Grohé, and Uribe (2001a; 2001b), in the presence of OBCs, there are often 
multiple steady-states. For example, a model with a zero lower bound on nominal 
interest rates and Taylor rule monetary policy when away from the bound will have an 
additional “bad” deflationary steady-state in which nominal interest rates are zero. The 
presence of such multiple steady-states means that there can be sunspot equilibria which 
jump between the neighbourhoods of the two steady-states. Furthermore, if agents put 
a positive probability on being in the neighbourhood of the “bad” steady-state in future, 
then since this “bad” steady-state is indeterminate in the ZLB case, by a backwards 
induction argument, there is indeterminacy now. The consequences of indeterminacy of 
these kinds have been explored by Schmitt-Grohé and Uribe (2012), Mertens and Ravn 
(2014) and Aruoba, Cuba-Borda, and Schorfheide (2014), amongst others. In all cases, 

                                                 
2 DynareOBC is available from: https://github.com/tholden/dynareOBC  
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the key to generating indeterminacy is that agents’ beliefs about the point to which the 
economy would converge in the absence of future uncertainty are switching from one 
steady-state to the other. 

One might hope, however, that the presence of announced inflation targets in many 
countries might anchor long-run expectations at the “good” steady-state. Additionally, 
one might legitimately wonder about the plausibility of the required coordination in 
beliefs necessary to sustain these sunspot equilibria. It is an interesting question then 
whether there are still multiple equilibria even when all agents believe that in the long-
run, the economy will return to the “good” steady-state. It is on such equilibria that we 
focus on in this paper, providing necessary and sufficient conditions for the existence 
of a unique perfect-foresight path, and also examining whether such beliefs are actually 
consistent with rationality. A restricted class of such equilibria were also examined by 
Brendon, Paustian, and Yates (2015) who examined multiplicity in specific models 
when agents believe that with probability one, in one period’s time, they will escape the 
bound and return to the neighbourhood of the “good” steady-state. 

We show that many standard New Keynesian models featuring endogenous state 
variables (e.g. price dispersion), such as those of Fernández-Villaverde et al. (2012) or 
Smets and Wouters (2003; 2007) do not possess such a unique perfect-foresight path, 
meaning that even in this best case scenario in which agents’ long-run expectations are 
pinned down, there is still multiplicity of equilibria. Indeed, we show that in these 
models, there are some initial states from which the economy has one return path that 
never hits the ZLB, and another that does hit it, so the fact that the ZLB is not violated 
in a model in which it is not imposed does not mean that it would not be hit were it to 
be imposed. However, we show that under a price-targeting regime, there is a unique 
equilibrium path even when we impose the ZLB. 

We also provide both necessary and sufficient conditions for the existence of any 
perfect-foresight solutions which return to the original (“good”) steady-state. When no 
such equilibria exists, agents must switch their beliefs to the other (“bad”) steady-state, 
where they will remain in the absence of any way for agents to coordinate back on the 
“good” steady-state. We show that for standard New Keynesian models with 
endogenous state variables, there is a positive probability of ending up in a state of the 
world in which there is no perfect foresight path returning to the “good” steady-state,3 

                                                 
3 This has some similarities to the results of Richter and Throckmorton (2014) and Appendix B of Gavin et al. (2015), who show 
numerically that a particular solution algorithm does not converge in certain areas of the state/parameter/guess space for a simple 
NK model. However, our results are theoretical, so whereas Richter and Throckmorton and Gavin et al.’s results may possibly be 
driven by the particular properties of their solution procedure, ours imply true non-existence, at least for perfect foresight, otherwise 
linear models. For example, for the model with Rotemberg (1982) type pricing, and no steady-state distortions, that these authors 
work with, our results imply global existence and uniqueness for the linearized model when the standard Taylor principle is satisfied. 
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implying that in the stochastic model, agents must always put positive probability on 
tending to the “bad” steady-state. This in turn implies global indeterminacy in such 
models, by a backwards induction argument. Once again though, price level targeting is 
sufficient to restore determinacy. 

Additionally, we present theoretical results on the computational complexity of 
finding a solution to models with occasionally binding constraints. We are able to show 
that were there an algorithm which could solve general non-stochastic models with 
OBCs in an amount of time that is polynomial in the number of states in the model, then 
such an algorithm could also be used for solving in polynomial time any problem the 
solution of which could be verified in polynomial time. This would imply, for example, 
efficient methods of breaking all standard forms of cryptography used to secure internet 
banking. Of course, neither we nor the computer science profession believe that such a 
polynomial time algorithm can exist, hence this provides a proof by contradiction of the 
“curse of dimensionality” for this class of models. It also raises doubts about the realism 
of assuming rational expectations in these situations. However, we show that under price 
level targeting, the solution may be computed in polynomial time, meaning it is much 
easier for agents to form expectations under price level targeting than it is under inflation 
targeting. This gives an additional argument for price level targeting. 

We go on to present an algorithm for solving general models with occasionally 
binding constraints, as efficiently as is possible given the aforementioned theoretical 
results. In the otherwise linear, perfect foresight case, we are able to represent the 
problem as the solution to a mixed integer linear programming problem, a problem for 
which incredibly efficient solvers already exist. The key idea of the algorithm is that an 
OBC provides a source of endogenous news about the future. When a shock hits, driving 
the economy to the bound in some future periods, that tells us that in those future 
periods, the (lower) bounded variable will be higher that it would be otherwise.4 

Thinking in terms of endogenous news shocks also provides intuition for the presence 
of multiple equilibria in these models. As an example, consider a New Keynesian model 
with significant real and nominal frictions. If these frictions are large enough, then 
learning about a future positive shock to nominal interest rates induces a sufficiently 
severe downtown that the Taylor rule calls for much lower rates, even in the period in 
which the shock actually arrives. While positive shocks having negative effects may 
sound somewhat bizarre, in fact this is a relatively common phenomenon in New 
Keynesian models. Then, there will be some magnitude of news shock to nominal 

                                                 
4 The idea of imposing the zero lower bound by adding news shocks is also present in Holden (2010), Hebden et al. (2011), Holden 
and Paetz (2012) and Bodenstein et al. (2013). News shocks were introduced to the literature by Beaudry and Portier (2006). 
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interest rates today at which the news is of precisely the correct magnitude to bring the 
negative interest rates implied by the Taylor rule up to zero, in that period. A news shock 
of this magnitude thus becomes a self-fulfilling prophecy, as illustrated in Figure 1. In 
models with weaker rigidities, multiple equilibria are still possible if there is some 
combination of future periods such that with appropriate news shocks in each, a similar 
self-fulfilling prophecy occurs. 

Our algorithm for finding the required news shocks to impose the zero lower bound 
is guaranteed to return a solution in finite time when one exists, and when there is no 
solution, the algorithm returns a certificate of this in finite time instead. This contrasts 
with approaches based on a fixed point iteration for which non-existence is not normally 
detectable in finite time, since one cannot rule out that the algorithm would converge if 
only it were left for another hour/day/year. Furthermore, where there are multiple 
solutions, our algorithm always returns one minimising an intuitive criterion, with a 
free parameter that enables the user to select the desired “type” of equilibrium. This 
algorithm may be applied to stochastic models using the idea of the extended path 
algorithm of Fair and Taylor (1983), and made consistent with rationality following the 
stochastic extended path algorithm of Adjemian and Juillard (2013), as discussed below. 

For models that are non-linear even apart from the constraint, we exploit the 
convenient properties of pruned perturbation approximations (Kim et al. 2008), which 
enables the base algorithm to be applied to higher order approximations with only 
minimal modifications. Although this does not capture the risk of hitting the bound, it 
does at least help capture the fact that at the bound, the economy is a substantial distance 
from steady-state, and so the slopes of variables’ responses will have changed. 

To ensure consistency with rationality, such as precautionary motives to avoid the 
bound, we use a modified version of the stochastic extended path algorithm of Adjemian 
and Juillard (2013) that is designed to exploit both the special properties of our inner 
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Figure 1: Self-fulfilling news shocks 
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solution algorithm, and the special properties of pruned perturbation. Whereas in the 
original Adjemian and Juillard (2013) approach, integrating over 𝑆𝑆 periods of future 
uncertainty required a number of solutions to the perfect foresight problem that was 
exponential in both 𝑆𝑆 and the number of shocks, we are able to integrate over the same 
number of periods of future uncertainty with only polynomial in 𝑆𝑆  solutions of the 
perfect foresight problem. In practice, this means that we can integrate over enough 
periods of future uncertainty to capture even one hundred periods of future uncertainty, 
and even in medium scale models. 

Our paper is structured as follows. In the following section, section 2 we present our 
key theoretical results on otherwise linear perfect foresight models. We then discuss the 
application of these results to New Keynesian models in section 3. In section 4 we 
present our solution algorithm for otherwise linear perfect foresight models, and discuss 
the computational complexity of the problem. We then extend this to non-linear, non-
perfect foresight models in section 5, and we assess the algorithm’s numerical accuracy 
and speed, and discuss its relationship to other algorithms in the literature. Section 6 
concludes. All files needed for the replication of this paper’s numerical results are 
included in the Examples directory of the DynareOBC toolkit.5 

2. Theoretical results on occasionally binding constraints in 
otherwise linear models under perfect foresight 

In this section, we present our main theoretical results on existence and uniqueness 
of perfect foresight solutions to models which are linear apart from an occasionally 
binding constraint. We start by defining the problem to be solved, and examining its 
relationship both to the problem without OBCs, and to a related problem with news 
shocks to the bounded variable. Using the news shock representation, we demonstrate 
that solving the model with OBCs is equivalent to solving a linear complementarity 
problem. We then discuss some theoretical background on these problems, before 
presenting the main existence and uniqueness results. 
2.1. Problem set-ups 

Suppose that for 𝑡𝑡 ∈ ℕ+, (i.e. 𝑡𝑡 ∈ ℕ, 𝑡𝑡 > 0), the first order conditions of some model 
may be represented as: 

�𝐴𝐴̂ + �̂�𝐵 + 𝐶𝐶�̂�̂�𝜇 = 𝐴𝐴�̂�𝑥�̂�𝑡−1 + 𝐵𝐵𝑥𝑥�̂�𝑡 + 𝐶𝐶�̂�𝔼𝑡𝑡𝑥𝑥�̂�𝑡+1 + 𝐷𝐷�𝜀𝜀𝑡𝑡, 
where �̂�𝜇 ∈ ℝ�̂�𝑛 and 𝑥𝑥�̂�𝑡 ∈ ℝ�̂�𝑛, 𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 for all 𝑡𝑡 ∈ ℕ+, and suppose that 𝑥𝑥0̂ 
is given as an initial condition. Throughout this paper, we will refer to first order 

                                                 
5 These files may be viewed online at https://github.com/tholden/dynareOBC/tree/master/Examples.  

https://github.com/tholden/dynareOBC/tree/master/Examples
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conditions such as these as “the model”, conflating them with the optimisation 
problem(s) which gave rise to them. 

Furthermore, suppose that 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , as in an impulse response or perfect 
foresight simulation exercise. Additionally, we assume the existence of a terminal 
condition of the form 𝑥𝑥�̂�𝑡 → �̂�𝜇 as 𝑡𝑡 → ∞, coming, for example, from the source model’s 
transversality constraints. 

For 𝑡𝑡 ∈ ℕ+, define 𝑥𝑥𝑡𝑡 ≔ � 𝑥𝑥�̂�𝑡
𝜀𝜀𝑡𝑡+1

�, 𝜇𝜇 ≔ ��̂�𝜇
0�, 𝐴𝐴 ≔ �𝐴𝐴̂ 𝐷𝐷�

0 0
�, 𝐵𝐵 ≔ ��̂�𝐵 0

0 𝐼𝐼
�, 𝐶𝐶 ≔ �𝐶𝐶 ̂ 0

0 0
�, 

then, for 𝑡𝑡 ∈ ℕ+: 
(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1, (1) 

and we have the extended initial condition 𝑥𝑥0 = �𝑥𝑥0̂
𝜀𝜀1

� , and the extended terminal 

condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. Expectations have disappeared since there is no uncertainty 
after period 0. Thus, the problem of solving the original model has the same form as 
that given in: 

Problem 1 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 
as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+, equation (1) holds. 

We make the following assumption in all of the following: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛, Problem 1 has a unique solution, which takes the 
form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1, for 𝑡𝑡 ∈ ℕ+, where 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐴𝐴, and where all of 
the eigenvalues of 𝐹𝐹 are weakly inside the unit circle. 

Sims’s (2002) generalisation of the standard Blanchard-Kahn (1980) conditions is 
necessary and sufficient for this. Further, to avoid dealing specially with the knife-edge 
case of exact unit eigenvalues (even if they are constrained to the part of the model that 
is solved forward), in the following we rule it out with the subsequent assumption, which 
is, in any case, a necessary condition for perturbation to produce a consistent 
approximation to a source non-linear model, and which is also necessary for the linear 
model to have a unique steady-state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

The combination of Assumption 1 and Assumption 2 imply that all of the eigenvalues 
of 𝐹𝐹 are strictly inside the unit circle. 

We are interested in models featuring occasionally binding constraints. We will 
concentrate on models featuring a single zero lower bound type constraint in their first 
equation, which we treat as defining the first element of 𝑥𝑥𝑡𝑡 . Generalising from this 
special case is straightforward, and is discussed in online appendix E. First, let us write 
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𝑥𝑥1,𝑡𝑡 , 𝐼𝐼1,⋅ , 𝐴𝐴1,⋅ , 𝐵𝐵1,⋅ , 𝐶𝐶1,⋅  for the first row of 𝑥𝑥𝑡𝑡 , 𝐼𝐼  , 𝐴𝐴 , 𝐵𝐵 , 𝐶𝐶  (respectively) and 𝑥𝑥−1,𝑡𝑡 , 𝐼𝐼−1,⋅ , 
𝐴𝐴−1,⋅, 𝐵𝐵−1,⋅, 𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for the first column of 𝐼𝐼 , 
and so on. Then we are interested in the solution to: 

Problem 2 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛  is given. Find 𝑇𝑇 ∈ ℕ  and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛  for 𝑡𝑡 ∈ ℕ+  such 
that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇)�, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1 + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡 + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1, 

and such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇 . 

Note that in this problem we are implicitly ruling out any solutions which get 
permanently stuck at an alternative steady-state, by assuming that the terminal condition 
remains as before. Indeed, we are assuming that the bound is only relevant for some 
finite number of periods 𝑇𝑇 . We continue to assume that there is no uncertainty after 
period 0, so, in this non-linear model, the path of the endogenous variables will not 
necessarily match up with the path of their expectation in a richer model in which there 
was uncertainty after period 0. 

In many models, the occasionally binding constraint comes from the KKT conditions 
of an optimisation problem. We will give in section 2.6 a general procedure for 
converting such conditions into a problem in the form of that Problem 2, and we provide 
a simple example of doing this in the second half of section 5.3. The intuition is that 
one can use the model’s equations to find the value the (lower) constrained variable 
would take were there no constraint and were the Lagrange multiplier on the constraint 
equal to zero today. This gives a “shadow” value of the constrained variable, and the 
actual value it takes will be the maximum of the bound and this shadow value. 

We will analyse Problem 2 with the help of solutions to the auxiliary problem: 

Problem 3 Suppose that 𝑇𝑇 ∈ ℕ , 𝑥𝑥0 ∈ ℝ𝑛𝑛  and 𝑦𝑦0 ∈ ℝ𝑇𝑇   is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈
ℝ𝑇𝑇  for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 
𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1. 

This may be thought of as a version of Problem 1 with news shocks up to horizon 𝑇𝑇  
added to the first equation. The value of 𝑦𝑦𝑡𝑡,0 gives the news shock that hits in period 𝑡𝑡, 
i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦𝑡𝑡,0 for 𝑡𝑡 ≤ 𝑇𝑇 , and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇 . 
2.2. Relationships between the problems 

Since 𝑦𝑦1,𝑡𝑡−1 = 0  for 𝑡𝑡 > 𝑇𝑇  , and using Assumption 1, (𝑥𝑥𝑇𝑇+1 − 𝜇𝜇) = 𝐹𝐹(𝑥𝑥𝑇𝑇 − 𝜇𝜇) , so 
with 𝑡𝑡 = 𝑇𝑇 , defining 𝑠𝑠𝑇𝑇+1 ≔ 0, (𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) = 𝑠𝑠𝑡𝑡+1 + 𝐹𝐹(𝑥𝑥𝑡𝑡 − 𝜇𝜇). 
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Proceeding now by backwards induction on 𝑡𝑡 , note that 0 = 𝐴𝐴(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) +
𝐵𝐵(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶𝐹𝐹(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0, so: 

(𝑥𝑥𝑡𝑡 − 𝜇𝜇) = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐴𝐴(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� 
= 𝐹𝐹(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, 

i.e., if we define: 𝑠𝑠𝑡𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� , then (𝑥𝑥𝑡𝑡 − 𝜇𝜇) = 𝑠𝑠𝑡𝑡 + 𝐹𝐹(𝑥𝑥𝑡𝑡−1 −
𝜇𝜇) . By induction then, this holds for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇} .6  Hence, we have proved the 
following lemma: 

Lemma 1 There is a unique solution to Problem 3 that is linear in 𝑥𝑥0 and 𝑦𝑦0. 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 = 𝐼𝐼⋅,𝑘𝑘 (i.e. 

a vector which is all zeros apart from a 1 in position 𝑘𝑘). Then, by linearity, for arbitrary 
𝑦𝑦0 the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  satisfy: 
𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡

(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (2) 
i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses to the news 
shocks. Then this result implies that for arbitrary 𝑦𝑦0, the path of the first variable in the 
solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: �𝑥𝑥1,1:𝑇𝑇 �′ = 𝜇𝜇1 + 𝑀𝑀𝑦𝑦0, where 𝑥𝑥1,1:𝑇𝑇  is 
the row vector of the first 𝑇𝑇  values of the first component of 𝑥𝑥𝑡𝑡. Furthermore, for both 
arbitrary 𝑥𝑥0 and 𝑦𝑦0, the path of the first variable in the solution to Problem 3 is given 
by: �𝑥𝑥1,1:𝑇𝑇 �′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0, where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇

(1) �
′
 and 𝑥𝑥𝑡𝑡

(1) is the unique solution to Problem 
1, for the given 𝑥𝑥0 .7  This ease in solving Problem 3 given 𝑦𝑦0  will be crucial to the 
efficiency of our eventual solution algorithm for Problem 2. 

Now let 𝑥𝑥𝑡𝑡
(2) be a solution to Problem 2 given an arbitrary 𝑥𝑥0. Since 𝑥𝑥𝑡𝑡

(2) → 𝜇𝜇 as 𝑡𝑡 →
∞, there exists 𝑇𝑇 ′ ∈ ℕ such that for all 𝑡𝑡 > 𝑇𝑇 ′, 𝑥𝑥1,𝑡𝑡

(2) > 0. We assume without loss of 
generality that 𝑇𝑇 ′ ≤ 𝑇𝑇 . We seek to relate the solution to Problem 2 with the solution to 
Problem 3 for an appropriate choice of 𝑦𝑦0. First, for all 𝑡𝑡 ∈ ℕ+, let: 

𝑒𝑒𝑡𝑡 ≔
⎩�⎨
�⎧−�𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇�� if 𝑥𝑥1,𝑡𝑡
(2) = 0

0 if 𝑥𝑥1,𝑡𝑡
(2) > 0

, (3) 

i.e. 𝑒𝑒𝑡𝑡 is the shock that would need to hit the first equation for the positivity constraint 
on 𝑥𝑥1,𝑡𝑡

(2) to be enforced. Note for future reference that by the definition of Problem 2, 
𝑒𝑒𝑡𝑡 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(2)𝑒𝑒𝑡𝑡 = 0, for all 𝑡𝑡 ∈ ℕ+. From this definition, we also have that for all 𝑡𝑡 ∈
ℕ+ , 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇� + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 . Furthermore, if 𝑡𝑡 > 𝑇𝑇  , 
then 𝑡𝑡 > 𝑇𝑇 ′ , and hence 𝑒𝑒𝑡𝑡 = 0 . Hence, by Assumption 1, �𝑥𝑥𝑇𝑇+1

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇
(2) − 𝜇𝜇� . 

                                                 
6 This representation of the solution to Problem 3 was inspired by that of Anderson (2015). 
7 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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Thus, much as before, with 𝑡𝑡 = 𝑇𝑇 , defining 𝑠𝑠�̃�𝑇+1 ≔ 0, �𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇�. 
Consequently, 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 , so 
�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, i.e., if we define: 𝑠𝑠�̃�𝑡 ≔ −(𝐵𝐵 +

𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡� , then �𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� . As before, by induction 
this must hold for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}. By comparing the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠�̃�𝑡, and the 
laws of motion of 𝑥𝑥𝑡𝑡 under both problems, we then immediately have that if Problem 3 
is started with 𝑥𝑥0 = 𝑥𝑥0

(2) and  𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ , then 𝑥𝑥𝑡𝑡

(2) solves Problem 3. Conversely, if 𝑥𝑥𝑡𝑡
(2) 

solves Problem 3 for some 𝑦𝑦0, then from the laws of motion of 𝑥𝑥𝑡𝑡 under both problems 
it must be the case that 𝑠𝑠�̃�𝑡 = 𝑠𝑠𝑡𝑡 for all 𝑡𝑡 ∈ ℕ, and hence from the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠�̃�𝑡, 
we have that 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇

′ . This has established the following result: 

Lemma 2 For any solution, 𝑥𝑥𝑡𝑡
(2) to Problem 2: 

1) With 𝑒𝑒1:𝑇𝑇   as defined in equation (3) , 𝑒𝑒1:𝑇𝑇 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇
(2) ≥ 0  and 𝑥𝑥1,1:𝑇𝑇

(2) ∘ 𝑒𝑒1:𝑇𝑇 = 0 , 
where ∘ denotes the Hadamard (entry-wise) product. 

2) 𝑥𝑥𝑡𝑡
(2) is also the unique solution to Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

3) If 𝑥𝑥𝑡𝑡
(2) solves Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and with some 𝑦𝑦0, then 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

However, to use the easy solution to Problem 3 to assist us in solving Problem 2 
requires a slightly stronger result. Suppose that 𝑦𝑦0 ∈ ℝ𝑇𝑇   is such that 𝑦𝑦0 ≥ 0 , 𝑥𝑥1,1:𝑇𝑇

(3) ∘
𝑦𝑦0

′ = 0 and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, where 𝑥𝑥𝑡𝑡

(3) is the unique solution to Problem 3 when 
started at 𝑥𝑥0, 𝑦𝑦0. We would like to prove that in this case 𝑥𝑥𝑡𝑡

(3) must also be a solution to 
Problem 2. I.e., we must prove that for all 𝑡𝑡 ∈ ℕ+: 
𝑥𝑥1,𝑡𝑡

(3) = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1
(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡

(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1
(3) − 𝜇𝜇�� , (4) 

�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1
(3) + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡

(3) + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1
(3) . 

By the definition of Problem 3, the latter equation must hold with equality, so there is 
nothing to prove there. Hence we just need to prove that equation (4) holds for all 𝑡𝑡 ∈
ℕ+ . So let 𝑡𝑡 ∈ ℕ+ . Now, if 𝑥𝑥1,𝑡𝑡

(3) > 0 , then 𝑦𝑦𝑡𝑡,0 = 0 , by the complementary slackness 
type condition (𝑥𝑥1,1:𝑇𝑇

(3) ∘ 𝑦𝑦0
′ = 0). Thus, from the definition of Problem 3: 

𝑥𝑥1,𝑡𝑡
(3) = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇� 
= max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇��, 
as required. The only remaining case is that 𝑥𝑥1,𝑡𝑡

(3) = 0 (since 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, by 

assumption), which implies that: 
𝑥𝑥1,𝑡𝑡

(3) = 0 = 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝐵𝐵1,⋅(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + 𝑦𝑦𝑡𝑡,0 
= 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + 𝑦𝑦𝑡𝑡,0, 

by the definition of Problem 3. Thus: 
𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝐶𝐶1,⋅(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) = −𝑦𝑦𝑡𝑡,0 ≤ 0, 
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where the inequality is an immediate consequence of another of our assumptions. 
Consequently, equation (4) holds in this case too. Together with Lemma 1, Lemma 2, 
and our representation of the solution of Problem 3, this completes the proof of the 
following proposition: 

Proposition 1 The following hold: 
1) Let 𝑥𝑥𝑡𝑡

(3) be the unique solution to Problem 3 when initialized with some 𝑥𝑥0, 𝑦𝑦0. Then 
𝑥𝑥𝑡𝑡

(3) is a solution to Problem 2 when initialized with 𝑥𝑥0 if and only if 𝑦𝑦0 ≥ 0, 𝑦𝑦0 ∘
(𝑞𝑞 + 𝑀𝑀𝑦𝑦0) = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ with 𝑡𝑡 > 𝑇𝑇 . 
2) Let 𝑥𝑥𝑡𝑡

(2) be any solution to Problem 2 when initialized with 𝑥𝑥0. Then there exists a 
𝑦𝑦0 ∈ ℝ𝑇𝑇   such that 𝑦𝑦0 ≥ 0 , 𝑦𝑦0 ∘ (𝑞𝑞 + 𝑀𝑀𝑦𝑦0) = 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 , such that 𝑥𝑥𝑡𝑡

(2)  is the 
unique solution to Problem 3 when initialized with 𝑥𝑥0, 𝑦𝑦0. 

2.3. The linear complementarity representation 
Proposition 1 establishes that providing we initially choose 𝑇𝑇  sufficiently high, to find 

a solution to Problem 2, it is sufficient to solve the following problem instead: 

Problem 4 Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇   and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   are given. Find 𝑦𝑦 ∈ ℝ𝑇𝑇   such that 𝑦𝑦 ≥ 0 , 
𝑦𝑦 ∘ (𝑞𝑞 + 𝑀𝑀𝑦𝑦) = 0 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. We call this the linear complementarity problem 
(LCP) (𝑞𝑞, 𝑀𝑀). (Cottle 2009) 

These problems have been extensively studied, and so we can import results on the 
properties of LCPs to derive results on the properties of solutions to models with OBCs.  

All of the results in the mathematical literature rest on properties of the matrix 𝑀𝑀, 
thus we must first establish if the structure of our particular 𝑀𝑀 implies it has any special 
properties. Unfortunately, it seems that 𝑀𝑀 has no general properties. We show this by 
constructing, in online appendix A, a model for each matrix in ℝ𝑇𝑇×𝑇𝑇 ,  such that the 𝑀𝑀 
matrix the model produces is precisely the matrix we started with. Our results from that 
appendix are summarised in the following proposition: 

Proposition 2 For any matrix ℳ ∈ ℝ𝑇𝑇×𝑇𝑇 , there exists a model in the form of Problem 
2 with a number of state variables given by a quadratic in 𝑇𝑇 , such that 𝑀𝑀 = ℳ for that 
model, where 𝑀𝑀 is defined as in equation (2), and such that for all 𝓆𝓆 ∈ ℝ𝑇𝑇 , there exists 
an initial state for which 𝑞𝑞 = 𝓆𝓆 , where 𝑞𝑞  is the path of the bounded variable when 
constraints are ignored. 

We now introduce some definitions of matrix properties that are necessary for the 
statement of our key existence and uniqueness results. The ultimate properties of the 
solutions to the OBC model are determined by which of these matrix properties 𝑀𝑀 
possesses. In each case, we give the definitions in a constructive form which makes 
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clear both how the property might be verified computationally, and the links between 
definitions. These are not necessarily in the form which is standard in the original 
literature, however. For both the original definitions, and the proofs of equivalence 
between the ones below and the originals, see Cottle, Pang, and Stone (2009a) and Xu 
(1993) (for the characterisation of sufficient models). 

Definition 1 (Principal sub-matrix, Principal minor) For a matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  , the 
principal sub-matrices of 𝑀𝑀 are the matrices: 

��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
�𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal sub-matrices of 𝑀𝑀  are formed by deleting the same rows and 
columns. The principal minors of 𝑀𝑀 are the collection of values: 

�det ��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
� �𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal minors of 𝑀𝑀 are the determinants of the principal sub-matrices of 𝑀𝑀. 

Definition 2 (P(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called a P-matrix (P0-matrix) if the 
principal minors of 𝑀𝑀 are all strictly (weakly) positive. Note: for symmetric 𝑀𝑀, 𝑀𝑀 is a 
P(0)-matrix if and only if all of its eigenvalues are strictly (weakly) positive. 

Definition 3 (General positive (semi-)definite) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called general 
positive (semi-)definite if 𝑀𝑀 + 𝑀𝑀′ is a P-matrix (P0-matrix). If 𝑀𝑀 is symmetric, then, 
𝑀𝑀 is general positive (semi-)definite if and only if it is positive (semi-)definite. 

Definition 4 (Sufficient matrices) Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 . 𝑀𝑀 is called column sufficient if 𝑀𝑀 
is a P0-matrix, and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 of 𝑀𝑀, with zero 

determinant, and for each proper principal sub-matrix �𝑊𝑊𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅
  of 𝑊𝑊   (𝑅𝑅 < 𝑆𝑆 ), 

with zero determinant, the columns of �𝑊𝑊𝑖𝑖,𝑗𝑗� 𝑖𝑖=1,…,𝑆𝑆
𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅

 do not form a basis for the column 

space of 𝑊𝑊  . 8  𝑀𝑀  is called row sufficient if 𝑀𝑀′  is column sufficient. 𝑀𝑀  is called 
sufficient if it is column sufficient and row sufficient.  

Definition 5 (S(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix (S0-matrix) if 
there exists 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 > 0 and 𝑀𝑀𝑦𝑦 ≫ 0 (𝑀𝑀𝑦𝑦 ≥ 0). 9 

Definition 6 ((Strictly) Semi-monotone) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) semi-
monotone if each of its principal sub-matrices is an S0-matrix (S-matrix).  

                                                 
8 This may be checked via the singular value decomposition. 
9  These condition may be rewritten as sup�𝜍𝜍 ∈ ℝ�∃𝑦𝑦 ≥ 0 s.t. ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, �𝑀𝑀𝑦𝑦�𝑡𝑡 ≥ 𝜍𝜍 ∧ 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , and 
sup�∑ 𝑦𝑦𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �𝑦𝑦 ≥ 0, 𝑀𝑀𝑦𝑦 ≥ 0 ∧ ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , respectively. As linear-programming problems, these may be 

verified in time polynomial in 𝑇𝑇  using the methods described in e.g. Roos, Terlaky, and Vial (2006). Alternatively, by Ville’s 
theorem of the alternative (Cottle, Pang, and Stone 2009b), 𝑀𝑀 is not an S0-matrix if and only if −𝑀𝑀′ is an S-matrix. 
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Definition 7 ((Strictly) Copositive) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called (strictly) copositive 
if 𝑀𝑀 + 𝑀𝑀′ is (strictly) semi-monotone.10 

Cottle, Pang, and Stone (2009a) note the following relationships between these classes 
(amongst others): 

Lemma 3 The following hold: 
1) All general positive semi-definite matrices are copositive and sufficient. 
2) P0 includes skew-symmetric matrices, general positive semi-definite matrices, 

sufficient matrices and P-matrices. 
3) All P0-matrices, and all copositive matrices are semi-monotone, and all P-matrices, 

and all strictly copositive matrices are strictly semi-monotone (and hence also S-
matrices). 

Additionally, from considering the 1 × 1  principal sub-matrices of 𝑀𝑀 , we have the 
following restrictions on the diagonal of 𝑀𝑀: 

Lemma 4 All general positive semi-definite, semi-monotone, sufficient, P0 and 
copositive matrices have non-negative diagonals, and all general positive definite, 
strictly semi-monotone, P and strictly copositive matrices have positive diagonals. 

For many macroeconomic models, this simple condition is sufficient to rule out 
membership of these matrix classes, as medium-scale DSGE models11  with a ZLB 
frequently have negative elements on the diagonal of their 𝑀𝑀 matrix, when 𝑇𝑇  is large 
enough. Thus, following the intuition of Figure 1, such models will satisfy the 
conditions to have multiple equilibria, though they will not be the only such models. 

Unfortunately, for all of these matrix classes except the classes of general positive 
(semi-)definite matrices, and S(0)-matrices, no algorithm which runs in an amount of 
time that is polynomial in 𝑇𝑇  is known, thus verifying class membership may not be 
feasible with large 𝑇𝑇 . However, disproving class membership only requires finding one 
principal sub-matrix which fails to have the required property, and for this, starting with 
the 1 × 1  principal sub-matrices (e.g. the diagonal), then considering the 2 × 2  ones 
(etc.) is often a good strategy.12 

A common intuition is that in models without state variables, 𝑀𝑀 must be both a P 
matrix, and an S matrix. In fact, this is not true. Indeed, there are even purely static 

                                                 
10 Väliaho (1986) contains an alternative characterisation which avoids solving any linear programming problems. 
11 This applies, for example, to the Smets and Wouters (2003) model, as we will show in section 3.5. 
12 The facts that all of the eigenvalues of a 𝑇𝑇 × 𝑇𝑇  P-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋

𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋
𝑇𝑇 �, and all of the 

eigenvalues of a 𝑇𝑇 × 𝑇𝑇  P0-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋
𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋

𝑇𝑇 � (Fang 1989) may also assist in ruling 
out these matrix classes. 
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models for which 𝑀𝑀 is not in either of these classes. For example, in online appendix 
B, we construct a purely static model for which 𝑀𝑀1:∞,1:∞ = −𝐼𝐼∞×∞, which is neither a 
P-matrix, nor an S-matrix, for any 𝑇𝑇 . 
2.4. Existence results 

We start by considering necessary or sufficient conditions for the existence of a 
solution to a model with occasionally binding constraints. Ideally, we would like the 
solution to exist for any possible path the bounded variable might have taken in the 
future were there no OBC, i.e. for any possible 𝑞𝑞. To see this, note that under a perfect 
foresight exercise we are ignoring the fact that shocks might hit the economy in future. 
More properly, we ought to integrate over future uncertainty, as in the stochastic 
extended path approach of Adjemian and Juillard (2013). A crude way to do this would 
just be to draw lots of samples of future shocks for periods 1, … , 𝑆𝑆, and average over 
these draws. However, in a linear model with shocks with unbounded support, providing 
at least one shock has an impact on a given variable, the distribution of future paths of 
that variable has positive support over the entirety of ℝ𝑆𝑆. Thus, ideally we would like 
𝑀𝑀 to be such that for any 𝑞𝑞, the linear complementarity problem (𝑞𝑞, 𝑀𝑀) has a solution. 

Definition 8 (Feasible LCP) Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇   and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   are given. The LCP 
corresponding to 𝑀𝑀 and 𝑞𝑞 is called feasible if there exists 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 ≥ 0 and 
𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. 

By construction, if an LCP (𝑞𝑞, 𝑀𝑀) has a solution, then it is feasible, i.e. being feasible 
is a necessary condition for existence. Checking feasibility is straightforward for any 
particular (𝑞𝑞, 𝑀𝑀), since to find a feasible solution we just need to solve a standard linear 
programming problem, which is possible in an amount of time that is polynomial in 𝑇𝑇 . 

Note that if the LCP (𝑞𝑞, 𝑀𝑀) is not feasible, then for any 𝑞𝑞 ̂ ≤ 𝑞𝑞, if 𝑦𝑦 ≥ 0, then 𝑞𝑞 ̂+ 𝑀𝑀𝑦𝑦 ≤
𝑞𝑞 + 𝑀𝑀𝑦𝑦 < 0  since (𝑞𝑞, 𝑀𝑀)  is not feasible, so the LCP (𝑞𝑞,̂ 𝑀𝑀)  is also not feasible. 
Consequently, if there are any 𝑞𝑞  for which the LCP is non-feasible, then there is a 
positive measure of such 𝑞𝑞. Thus, in a model with uncertainty, if there are some 𝑞𝑞 for 
which the model has no solution satisfying the terminal condition, even with arbitrarily 
large 𝑇𝑇 , then the model will have no solution satisfying the terminal condition with 
positive probability. This in turn means that it is not consistent with rationality for agents 
to believe that our terminal condition is satisfied with certainty, so they would have to 
place some positive probability on getting stuck in an alternative steady-state. 

The following proposition gives an easily verified necessary condition for the global 
existence of a solution to the model with occasionally binding constraints, given some 
fixed horizon 𝑇𝑇 : 
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Proposition 3 The LCP (𝑞𝑞, 𝑀𝑀) is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is an S-matrix. 
(Cottle, Pang, and Stone 2009a) 13 

Of course, it may be the case that the 𝑀𝑀 matrix is only an S-matrix when 𝑇𝑇  is very 
large, so we must be careful in using this condition to imply non-existence of a solution. 
Furthermore, it may be the case that although there exists some 𝑦𝑦 ∈ ℝ𝑇𝑇  with 𝑦𝑦 ≥ 0 such 
that 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 𝑦𝑦 ≫ 0, where we are indexing the 𝑀𝑀 matrix by its size for clarity, for any 
such 𝑦𝑦, inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 < 0, so for some 𝑞𝑞 ∈ ℝℕ+, the infinite LCP �𝑞𝑞, 𝑀𝑀1:∞,1:∞� is not 

feasible under the additional restriction that 𝑦𝑦𝑡𝑡 = 0 for 𝑡𝑡 > 𝑇𝑇 . Strictly, it is this infinite 
LCP which we ought to be solving, subject to the additional constraint that 𝑦𝑦 has only 
finitely many non-zero elements, which is implied by our terminal condition. 

By Proposition 3, this infinite problem is feasible if and only if: 
𝜍𝜍 ≔ sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 

Consequently, if 𝜍𝜍 > 0  then for every 𝑞𝑞 ∈ ℝℕ+ , for sufficiently large 𝑇𝑇  , the finite 
problem �𝑞𝑞1:𝑇𝑇 , 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 � will be feasible, which is a sufficient condition for solvability. 
In order to evaluate this limit, we first need to derive constructive bounds on the 𝑀𝑀 
matrix for large 𝑇𝑇 . We do this in the online appendix C, where we prove that the rows 
and columns of 𝑀𝑀  are converging to 0  (with constructive bounds), and that the 𝑘𝑘  th 
diagonal of the 𝑀𝑀  matrix is converging to the value 𝑑𝑑1,𝑘𝑘 , to be defined (again with 
constructive bounds), where diagonals are indexed such that the principal diagonal is 
index 0 , and indices increase as one moves up and to the right in the 𝑀𝑀  matrix. To 
explain the origins of 𝑑𝑑1,𝑘𝑘 we note the following lemma proved in online appendix C: 

Lemma 5 The (time-reversed) difference equation 𝐴𝐴𝑑𝑑�̂�𝑘+1 + 𝐵𝐵𝑑𝑑�̂�𝑘 + 𝐶𝐶𝑑𝑑�̂�𝑘−1 = 0 for all 𝑘𝑘 ∈
ℕ+ has a unique solution satisfying the terminal condition 𝑑𝑑�̂�𝑘 → 0 as 𝑘𝑘 → ∞, given by 
𝑑𝑑�̂�𝑘 = 𝐻𝐻𝑑𝑑�̂�𝑘−1, for all 𝑘𝑘 ∈ ℕ+, for some 𝐻𝐻 with eigenvalues in the unit circle. 

Then, we define 𝑑𝑑0 ≔ −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1, 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1, for all 𝑘𝑘 ∈ ℕ+, and 𝑑𝑑−𝑡𝑡 =
𝐹𝐹𝑑𝑑−(𝑡𝑡−1), for all 𝑡𝑡 ∈ ℕ+, so 𝑑𝑑𝑘𝑘 follows the time reversed difference equation for positive 
indices, and the original difference equation for negative indices. This is opposite to 
what one might perhaps expect since time is increasing as one descends the rows of 𝑀𝑀, 
but diagonal indices are decreasing as one descends in 𝑀𝑀. 

Using the resulting bounds on 𝑀𝑀, we can construct upper and lower bounds on 𝜍𝜍, 
which are described in the following propositions, also proven in online appendix C: 

                                                 
13 Most of the results on LCPs in both this and the following section are restatements of (assorted) results contained in Cottle, Pang, 
and Stone (2009a) and Väliaho (1986) (for the characterisation of “copositive-plus” matrices), and the reader is referred to those 
works for proofs and further references. 
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Proposition 4 There exists 𝜍𝜍𝑇𝑇 , 𝜍𝜍𝑇𝑇 ≥ 0, defined in the online appendix C, computable 
in time polynomial in 𝑇𝑇 , such that 𝜍𝜍𝑇𝑇 ≤ 𝜍𝜍 ≤ 𝜍𝜍𝑇𝑇 , and �𝜍𝜍𝑇𝑇 − 𝜍𝜍𝑇𝑇 � → 0 as 𝑇𝑇 → ∞. 

These conditions give simple tests for feasibility or non-feasibility with sufficiently 
large 𝑇𝑇 .  

 We now turn to sufficient conditions for the existence of a solution for some finite 𝑇𝑇 . 

Proposition 5 The LCP (𝑞𝑞, 𝑀𝑀) is solvable if it is feasible and, either: 
1. 𝑀𝑀 is row-sufficient, or, 
2. 𝑀𝑀  is copositive and for all non-singular principal sub-matrices 𝑊𝑊   of 𝑀𝑀 , all non-

negative columns of 𝑊𝑊 −1 possess a non-zero diagonal element. 
(Cottle, Pang, and Stone 2009a; Väliaho 1986) 

If either condition 1 or condition 2 of Proposition 5 is satisfied, then to check existence 
for any particular 𝑞𝑞, we only need to solve a linear programming problem to see if a 
solution exists for a particular 𝑞𝑞. As this may be substantially faster than solving the 
LCP, this may be helpful in practice. 

Proposition 6 The LCP (𝑞𝑞, 𝑀𝑀) is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if at least one of the following 
conditions holds: 
1. 𝑀𝑀 is an S-matrix, and either condition 1 or condition 2 of Proposition 5 are satisfied. 
2. 𝑀𝑀 is copositive with non-zero principal minors. 
3. 𝑀𝑀 is a P-matrix, a strictly copositive matrix or a strictly semi-monotone matrix. 
(Cottle, Pang, and Stone 2009a) 

If condition 1, 2 or 3 of Proposition 6 is satisfied, then we know that the LCP will 
always have a solution. Therefore, for any path of the bounded variable in the absence 
of the bound, we will also be able to solve the model when the bound is imposed. 
Monetary policy makers should always choose a policy rule that produces a model that 
satisfies one of these three conditions, if they can, since otherwise there is a positive 
probability that only solutions converging to the “bad” steady-state will exist in some 
state of the world.  

Ideally, we might have liked conditions for the existence of a solution that are both 
necessary and sufficient, but unfortunately at present no such conditions exist in full 
generality. However, in the special case of 𝑀𝑀 matrices with nonnegative entries, we have 
the following result: 

Proposition 7 If 𝑀𝑀 is a matrix with nonnegative entries, then the LCP (𝑞𝑞, 𝑀𝑀) is solvable 
for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀 has a strictly positive diagonal. (Cottle, Pang, and Stone 
2009a) 
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2.5. Uniqueness results 
While no fully general necessary and sufficient conditions have been derived for 

existence, such conditions are available for uniqueness, in particular: 

Proposition 8 The LCP (𝑞𝑞, 𝑀𝑀) has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 , if and only if 𝑀𝑀 is 
a P-matrix. If 𝑀𝑀 is not a P-matrix, then the LCP (𝑞𝑞, 𝑀𝑀) has multiple solutions for some 
𝑞𝑞. (Samelson, Thrall, and Wesler 1958; Cottle, Pang, and Stone 2009a) 

This proposition is the equivalent for models with OBCs of the key proposition of 
Blanchard and Kahn (1980). By testing whether our matrix 𝑀𝑀 is a P-matrix we can 
immediately determine if the model possesses a unique solution in any state of the 
world, and for any sequence of future shocks, for a fixed 𝑇𝑇  . In our experience, this 
condition is satisfied in efficient models, such as models of irreversible investment, as 
one would expect, but is not generally satisfied in medium-scale New-Keynesian 
models with a ZLB on nominal interest rates. Given that if 𝑀𝑀 is a P-matrix, so too are 
all its principal sub-matrices, if we see that 𝑀𝑀 is not a P-matrix for some 𝑇𝑇 , then we 
know that with larger 𝑇𝑇  it would also not be a P-matrix. Thus, if for some 𝑇𝑇 , 𝑀𝑀 is not a 
P-matrix, then we know that the model does not have a unique solution, even for 
arbitrarily large 𝑇𝑇  . Alternatively, we can prove that with large 𝑇𝑇   some 𝑀𝑀  is not a P-
matrix by using the analytic formula for the limit of its diagonal given in the previous 
section, i.e. 𝑑𝑑0,1 = −𝐼𝐼1,⋅(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1. If this value is negative, then we know 
that with sufficiently large 𝑇𝑇 , 𝑀𝑀 will not be a P-matrix. 

Since some classes of models almost never possess a unique solution when at the zero 
lower bound, we might reasonably require a lesser condition, namely that at least when 
the solution to the model without a bound is a solution to the model with the bound, 
then it ought to be the unique solution. This is equivalent to requiring that when 𝑞𝑞 is 
non-negative, the LCP (𝑞𝑞, 𝑀𝑀) has a unique solution. Conditions for this are given in the 
following propositions: 

Proposition 9 The LCP (𝑞𝑞, 𝑀𝑀) has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇  with 𝑞𝑞 ≫ 0 (𝑞𝑞 ≥ 0) 
if and only if 𝑀𝑀 is (strictly) semi-monotone. (Cottle, Pang, and Stone 2009a) 

Hence, by verifying that 𝑀𝑀 is (strictly) semi-monotone, we can reassure ourselves that 
merely introducing the bound will not change the solution away from the bound. When 
this condition is violated, even when the economy is a long way from the bound, there 
may be solutions which jump to the bound. Again, since principal sub-matrices of 
(strictly) semi-monotone are (strictly) semi-monotone, a failure of (strict) semi-
monotonicity for some 𝑇𝑇  implies a failure for all larger 𝑇𝑇 . Furthermore, if 𝑑𝑑0,1 < 0 then 
again for sufficiently large 𝑇𝑇 , 𝑀𝑀 cannot be semi-monotone. 
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Where there are multiple solutions, we might like to be able to select one via some 
objective function. This is particularly tractable when either the number of solutions is 
finite, or the solution set is convex. Conditions for this are given in online appendix D. 
2.6. Results from dynamic programming 

Alternative existence and uniqueness results for the infinite 𝑇𝑇   problem can be 
established via dynamic programming methods, under the assumption that Problem 2 
comes from the first order conditions solution of a social planner problem. These have 
the advantage that their conditions are potentially much easier to evaluate, though they 
also have somewhat limited applicability. We focus here on uniqueness results, since 
these are generally of greater interest. 

Suppose that the social planner in some economy solves the following problem: 

Problem 5 Suppose 𝜇𝜇 ∈ ℝ𝑛𝑛, Ψ(0) ∈ ℝ𝑐𝑐×1 and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛 are given, where 𝑐𝑐 ∈ ℕ. 
Define Γ�: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) (where ℙ denotes the power-set operator) by: 

Γ�(𝑥𝑥) = �𝑧𝑧 ∈ ℝ𝑛𝑛�  0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�� , (5) 

for all 𝑥𝑥 ∈ ℝ𝑛𝑛. (Note: 𝛤𝛤�(𝑥𝑥) will give the set of feasible values for next period’s state if 
the current state is 𝑥𝑥. Equality constraints may be included by including an identical 
lower bound and upper bound.) Define: 

𝑋𝑋̃ ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ�(𝑥𝑥) ≠ ∅�, (6) 
and suppose without loss of generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ�(𝑥𝑥) ∩ 𝑋𝑋̃ = Γ�(𝑥𝑥). (Note: this 
means that the linear inequalities bounding 𝑋𝑋̃  are already included in those in the 
definition of 𝛤𝛤�(𝑥𝑥). It is without loss of generality as the planner will never choose an 
𝑥𝑥 ̃ ∈ 𝛤𝛤�(𝑥𝑥) such that 𝛤𝛤�(𝑥𝑥)̃ = ∅.) Further define ℱ�: 𝑋𝑋̃ × 𝑋𝑋̃ → ℝ by: 

ℱ�(𝑥𝑥, 𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + 1

2 �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
𝑢𝑢(̃2) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� , (7) 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋̃ , where 𝑢𝑢(0) ∈ ℝ , 𝑢𝑢(1) ∈ ℝ1×2𝑛𝑛  and 𝑢𝑢(̃2) = 𝑢𝑢(̃2)′ ∈ ℝ2𝑛𝑛×2𝑛𝑛  are given. 
Finally, suppose 𝑥𝑥0 ∈ 𝑋𝑋̃ is given and 𝛽𝛽 ∈ (0,1), and choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
(8) 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ�(𝑥𝑥𝑡𝑡−1). 

To ensure the problem is well behaved, we make the following assumption: 

Assumption 3 𝑢𝑢(̃2) is negative-definite. 

In online appendix F, we establish the following result: 

Proposition 10 If either 𝑋𝑋̃ is compact, or, Γ�(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ�(𝑥𝑥) for all 
𝑥𝑥 ∈ 𝑋𝑋̃, then for all 𝑥𝑥0 ∈ 𝑋𝑋̃, there is a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=0

∞  which solves Problem 5. 
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We wish to use this result to establish the uniqueness of the solution to the first order 
conditions. The Lagrangian for our problem is given by: 

� 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆Ψ,𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ���

∞

𝑡𝑡=1
, (9) 

for some KKT-multipliers 𝜆𝜆𝑡𝑡 ∈ ℝ𝑐𝑐  for all 𝑡𝑡 ∈ ℕ+ . Taking the first order conditions 
leads to the following necessary KKT conditions, for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1) + 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)� , (10) 

0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � , 0 ≤ 𝜆𝜆𝑡𝑡, 0 = 𝜆𝜆𝑡𝑡 ∘ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� , (11) 

where subscripts 1 and 2 refer to blocks of rows or columns of length 𝑛𝑛. Additionally, 
for 𝜇𝜇 to be the steady-state of 𝑥𝑥𝑡𝑡 and 𝜆𝜆����� to be the steady-state of 𝜆𝜆𝑡𝑡, we require:  

0 = 𝑢𝑢⋅,2
(1) + 𝜆𝜆�����′Ψ⋅,2

(1) + 𝛽𝛽�𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�, (12) 

0 ≤ Ψ(0), 0 ≤ 𝜆𝜆�����, 0 = 𝜆𝜆����� ∘ Ψ(0). (13) 
In online appendix G we prove the following result: 

Proposition 11 Suppose that for all 𝑡𝑡 ∈ ℕ , (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   and (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT 
conditions given in equations (10)  and (11) , and that as 𝑡𝑡 → ∞ , 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆����� , 
where 𝜇𝜇  and 𝜆𝜆  satisfy the steady-state KKT conditions given in equations (12)  and 
(13). Then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  solves Problem 5. If, further, either condition of Proposition 10 is 
satisfied, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  is the unique solution to Problem 5, and there can be no other 
solutions to the KKT conditions given in equations (10)  and (11)  satisfying 𝑥𝑥𝑡𝑡 → 𝜇𝜇 
and 𝜆𝜆𝑡𝑡 → 𝜆𝜆����� as 𝑡𝑡 → ∞. 

Now, it is possible to convert the KKT conditions given in equations (10) and (11) into 
a problem in the form of the multiple-bound generalisation of Problem 2 quite generally. 
To see this, first note that we may rewrite equation (10) as: 

0 = 𝑢𝑢⋅,2
(1)′

+ 𝑢𝑢2̃,1
(2)(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝑢𝑢2̃,2

(2)(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + Ψ⋅,2
(1)′

𝜆𝜆𝑡𝑡

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,1
(2)(𝑥𝑥𝑡𝑡 − 𝜇𝜇) + 𝑢𝑢1̃,2

(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1
(1)′

𝜆𝜆𝑡𝑡+1�. 
Now, 𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1,1
(2)   is negative definite, hence it is valid to define 𝒱𝒱 ≔ Ψ⋅,2

(1)�𝑢𝑢2̃,2
(2) +

𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
, and equation (9) implies that: 

Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

= Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)�(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) − 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

−Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
𝜆𝜆𝑡𝑡.

(14) 

Moreover, equation (11)  implies that if the 𝑘𝑘  th element of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is 

strictly positive, then the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is zero, so: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � = max{0, 𝑧𝑧𝑡𝑡} , (15) 
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where: 
𝑧𝑧𝑡𝑡 ≔ Ψ(0) + �Ψ⋅,1

(1) − 𝒱𝒱𝑢𝑢2̃,1
(2)�(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇)

− 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇) + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

− �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
+ 𝒲𝒲� 𝜆𝜆𝑡𝑡, 

and 𝒲𝒲 ∈ ℝ𝑐𝑐×𝑐𝑐 is an arbitrary, strictly positive diagonal matrix. A natural choice is: 
𝒲𝒲 ≔ − diag diag �Ψ⋅,2

(1)�𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)�
−1

Ψ⋅,2
(1)′

�, 

providing this is strictly positive (it is weakly positive at least as 𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)  is negative 
definite), where the diag operator maps matrices to a vector containing their diagonal, 
and maps vectors to a matrix with the given vector on the diagonal, and zeros elsewhere. 

We claim that we may replace equation (11) with equation (15) without changing the 
model. We have already shown that equation (11)  implies equation (15) , so we just 
have to prove the converse. We continue to suppose equation (9) holds, and thus, so too 
does equation (14). Then, from subtracting equation (14) from equation (15), we have 
that 𝒲𝒲𝜆𝜆𝑡𝑡 = max{−𝑧𝑧𝑡𝑡, 0}. Hence, as 𝒲𝒲 is a strictly positive diagonal matrix, and the 
right hand side is weakly positive, 𝜆𝜆𝑡𝑡 ≥ 0. Furthermore, the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is non-
negative if and only if the 𝑘𝑘th element of 𝑧𝑧𝑡𝑡 is non-positive (as 𝒲𝒲 is a strictly positive 
diagonal matrix), which in turn holds if and only if the 𝑘𝑘 th element of Ψ(0) +
Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is equal to zero, by equation (15) . Thus equation (11)  is satisfied. 

Combined with our previous results, this gives the following proposition: 

Proposition 12 Suppose we are given a problem in the form of Problem 5. Then, the 
KKT conditions of that problem may be placed into the form of the multiple-bound 
generalisation of Problem 2. Let �𝑞𝑞𝑥𝑥0

, 𝑀𝑀�  be the infinite LCP corresponding to this 
representation, given initial state 𝑥𝑥0 ∈ 𝑋𝑋̃. Then, if 𝑦𝑦 is a solution to the LCP, 𝑞𝑞𝑥𝑥0

+ 𝑀𝑀𝑦𝑦 
gives the stacked paths of the bounded variables in a solution to Problem 5. If, further, 
either condition of Proposition 10 is satisfied, then this LCP has a unique solution for 
all 𝑥𝑥0 ∈ 𝑋𝑋̃, which gives the unique solution to Problem 5, and, for sufficiently large 𝑇𝑇 ∗, 
the finite LCP �𝑞𝑞𝑥𝑥0

(𝑇𝑇∗), 𝑀𝑀(𝑇𝑇∗)� has a unique solution 𝑦𝑦(𝑇𝑇∗) for all 𝑥𝑥0 ∈ 𝑋𝑋̃, where 𝑞𝑞𝑥𝑥0
(𝑇𝑇∗) +

𝑀𝑀(𝑇𝑇∗)𝑦𝑦(𝑇𝑇∗) gives the first 𝑇𝑇 ∗ periods of the stacked paths of the bounded variables in a 
solution to Problem 5. 

This proposition provides some evidence that the LCP will have a unique solution when 
it is generated from a dynamic programming problem with a unique solution. In online 
appendix H, we derive similar results for models with more general constraints and 
objective functions. The proof of this proposition also showed how one can convert 
KKT conditions into equations of the form handled by our methods. 
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3. Applications to New Keynesian models 

Brendon, Paustian, and Yates (2015) (henceforth: BPY) consider multiple equilibria 
in a simple New Keynesian (NK) model with an output growth rate term in the Taylor 
rule. They show that with sufficiently large reaction to the growth rate, there can be 
multiple equilibria today, even when the policy rule used to form tomorrow’s 
expectations is held fixed. This is equivalent to the existence of multiple equilibria even 
when 𝑇𝑇 = 1. In the first subsection here, we give an alternative analytic proof of this 
using our results, and discuss the generalisation to higher 𝑇𝑇 . 

BPY go on to show numerical results from the model with persistence in the shadow 
nominal interest rate (i.e. the rate which would obtain were it not for the ZLB). In the 
second subsection here we numerically examine this case with larger 𝑇𝑇 , illustrating how 
multiple equilibria tend to become easier to support when 𝑇𝑇  is large. 

With an appropriately constructed limit, price level targeting is the result of increasing 
the persistence in the monetary rule to unity. In new analytic results in the third 
subsection here, we show that under price level targeting, with 𝑇𝑇 = 1, 𝑀𝑀 is a P-matrix 
regardless of the coefficients on prices and output. We also show that this continues to 
hold for large 𝑇𝑇 , and that the model is always feasible for sufficiently large 𝑇𝑇 . 

However, we do not want to give the impression that multiplicity and non-existence 
are only caused by the central bank responding to the growth rate, or that they are only 
a problem in carefully constructed theoretical examples. In subsection 3.4, we show that 
a standard NK model with positive steady-state inflation and a ZLB possesses multiple 
equilibria in some states, and no solutions in others, even with an entirely standard 
Taylor rule. We also show that here too price level targeting is sufficient to restore 
determinacy. Finally, in the last sub-section we show that these conclusions also carry 
through to the posterior-modes of the Smets and Wouters (2003; 2007) models. 
3.1. The simple Brendon, Paustian, and Yates (2015) (BPY) model 

The equations of the simple Brendon, Paustian, and Yates (2015) model are as 
follows: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1�, 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

where 𝑥𝑥𝑖𝑖,𝑡𝑡 is the nominal interest rate, 𝑥𝑥𝑦𝑦,𝑡𝑡 is the deviation of output from steady-state, 
𝑥𝑥𝜋𝜋,𝑡𝑡 is the deviation of inflation from steady-state, and 𝛽𝛽 ∈ (0,1), 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞), 
𝛼𝛼𝜋𝜋 ∈ (1, ∞) are parameters. In online appendix I, we prove the following: 

Proposition 13 The BPY model is in the form of Problem 2, and satisfies Assumptions 
1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 < 0 (𝑀𝑀 = 0) if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 (𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋). 
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For a 1 × 1 matrix, checking the conditions from section 2.3 is trivial. In particular, 
we have that if 𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is a general positive definite, strictly semi-monotone, 
strictly co-positive, sufficient, P, S matrix; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is a general positive semi-
definite, semi-monotone, co-positive, sufficient, P0, S0 matrix. Hence, when 𝑇𝑇 = 1, if 
𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a unique solution for all 𝑞𝑞; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a 
unique solution whenever 𝑞𝑞 > 0 , and at least one solution when 𝑞𝑞 = 0 . When 𝛼𝛼∆𝑦𝑦 >
𝜎𝜎𝛼𝛼𝜋𝜋, 𝑀𝑀 is negative, and so for any positive 𝑞𝑞, there exists 𝑦𝑦 > 0 such that 𝑞𝑞 + 𝑀𝑀𝑦𝑦 = 0, 
so the model has multiple solutions. I.e. there are solutions that jump to the bound, even 
when the nominal interest rate would always be positive were there no bound at all. 

We illustrate this by adding a shock to the Euler equation, and showing impulse 
responses for alternative solutions. In particular, we replace the Euler equation with: 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 − (0.01)𝜀𝜀𝑡𝑡�, 

and take the parameterisation 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , 𝜌𝜌 =

0.5, following BPY, and we additionally set 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.6, to ensure we are 
in the region with multiple solutions. In Figure 2, we show two alternative solutions to 
the impulse response to a magnitude 1 shock to 𝜀𝜀𝑡𝑡. The solid line in the left plot gives 
the solution which minimises ‖𝑦𝑦‖∞ . This solution never hits the bound, and is 
moderately expansionary. The solid line in the right plot gives the solution which 
minimises ‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞ . (The dotted line in the right plot repeats the left plot, for 
comparison.) This solution stays at the bound for two periods, and is strongly 
contractionary, with a magnitude around 100 times larger than the other solution. 

 
Minimum ‖𝒚𝒚‖∞ solution14 

 
Minimum ‖𝒒𝒒 + 𝑴𝑴𝒚𝒚‖∞ solution15 

Figure 2: Alternative solutions following a magnitude 𝟏𝟏 impulse to 𝜺𝜺𝒕𝒕 
 

When 𝑇𝑇 > 1 , the previous results imply that if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 , then 𝑀𝑀  is neither P0, 
general positive semi-definite, semi-monotone, co-positive, nor sufficient, since the 
top-left 1 × 1 principal sub-matrix of 𝑀𝑀 is the same as when 𝑇𝑇 = 1. Thus, if anything, 
when 𝑇𝑇 > 1, the parameter region in which there are multiple solutions (when away 
                                                 
14 Calculated by setting 𝜔𝜔 = 1000, in the terminology of section 4.2. 
15 Calculated by setting 𝜔𝜔 = 0.01, in the terminology of section 4.2. 
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from the bound or at it) is larger. However, numerical experiments suggest that this 
parameter region in fact remains the same as 𝑇𝑇  increases, which is unsurprising given 
the weak persistence of this model. Thus, if we want more interesting results with higher 
𝑇𝑇 , we need to consider a model with a stronger persistence mechanism. 
3.2. The BPY model with shadow interest rate persistence 

We introduce persistence in the shadow interest rate by replacing the previous Taylor 
rule with 𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�, where 𝑥𝑥𝑑𝑑,𝑡𝑡, the shadow nominal interest rate is given by: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = (1 − 𝜌𝜌)�1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1. 
It is easy to verify that this may be put in the form of Problem 2, and that with 𝛽𝛽 ∈
(0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞) , 𝜌𝜌 ∈ (−1,1) , Assumption 2 is satisfied. For 

our numerical exercise, we again set 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), 

𝜌𝜌 = 0.5, following BPY. 
In Figure 3, we plot the regions in �𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋� space in which 𝑀𝑀 is a P-matrix (P0-

matrix) when 𝑇𝑇 = 2 or 𝑇𝑇 = 4. For this model, these correspond to the regions in which 
𝑀𝑀 is strictly semi-monotone (semi-monotone). As may be seen, in the smaller 𝑇𝑇  case, 
the P-matrix region is much larger. This relationship appears to continue to hold for 
both larger and smaller 𝑇𝑇 , with the equivalent 𝑇𝑇 = 1 plot being almost entirely shaded, 
and the large 𝑇𝑇  plot apparently tending to the equivalent plot from the model without 
monetary policy persistence. Intuitively, the persistence in the shadow nominal interest 
rate dampens the immediate response of nominal interest rates to inflation and output 
growth, making it harder to induce a zero lower bound episode over short-horizons. 

 
𝑻𝑻 = 𝟐𝟐 

 
𝑻𝑻 = 𝟒𝟒 

Figure 3: Regions in which 𝑴𝑴 is a P-matrix (shaded grey) or a P0-matrix (shaded grey, plus the black line), 
when 𝑻𝑻 = 𝟐𝟐 (left) or 𝑻𝑻 = 𝟒𝟒 (right). 

 

Further evidence that the long-horizon behaviour is the same as in the model without 
persistence is provided by the fact that with 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.05, 16 then 𝑀𝑀 is a P-
matrix, and from Proposition 4 we have that 𝜍𝜍 > 6.131 × 10−8, so 𝑀𝑀 is an S-matrix for 
                                                 
16 Results for larger 𝛼𝛼∆𝑦𝑦 were impossible due to numerical errors. 
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all sufficiently large 𝑇𝑇  . Furthermore, with 𝛼𝛼𝜋𝜋 = 1.5  and 𝛼𝛼∆𝑦𝑦 = 1.51 , then with 𝑇𝑇 =
200 , 𝑀𝑀  is not an S-matrix, 17  and from Proposition 4, 𝜍𝜍 ≤ 0 + numerical error , 
providing strong numerical evidence that for all sufficiently large 𝑇𝑇 , the LCP (𝑞𝑞, 𝑀𝑀) is 
not feasible for some 𝑞𝑞, and hence that the model does not always possess a solution. 
3.3. The BPY model with price targeting 

An alternative way to introduce persistence to the shadow interest rate is to set: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = (1 − 𝜌𝜌) �1 − 𝛽𝛽 +
𝛼𝛼∆𝑦𝑦

1 − 𝜌𝜌 �𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋
1 − 𝜌𝜌 𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1 

= (1 − 𝜌𝜌)(1 − 𝛽𝛽) + �𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1, 
which is as before apart from a missing (1 − 𝜌𝜌) multiplying the second bracketed term. 
In the limit as 𝜌𝜌 → 1, this tends to: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = 1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡 
where 𝑥𝑥𝑝𝑝,𝑡𝑡 is the price level, so 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1. This is a level targeting rule, with 
nominal GDP targeting as a special case with 𝛼𝛼∆𝑦𝑦 = 𝛼𝛼𝜋𝜋. Note that the omission of the 
(1 − 𝜌𝜌) coefficient on 𝛼𝛼∆𝑦𝑦 and 𝛼𝛼𝜋𝜋 is akin to having a “true” response to output growth 
of 𝛼𝛼∆𝑦𝑦

1−𝜌𝜌 and a “true” response to inflation of 𝛼𝛼𝜋𝜋
1−𝜌𝜌, so in the limit as 𝜌𝜌 → 1, we effectively 

have an infinitely strong response to these quantities. It turns out that this is sufficient 
to produce determinacy for all 𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋 ∈ (0, ∞). 

In particular, given the model: 
𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 − 1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 + 𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 − 𝛽𝛽𝑥𝑥𝑝𝑝,𝑡𝑡 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 
we prove in online appendix J that the following proposition holds: 

Proposition 14 The BPY model with price targeting is in the form of Problem 2, and 
satisfies Assumptions 1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 > 0 for all 𝛼𝛼𝜋𝜋 ∈ (0, ∞), 𝛼𝛼∆𝑦𝑦 ∈ [0, ∞). 

Furthermore, with 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , as before, and 

𝛼𝛼∆𝑦𝑦 = 1 , 𝛼𝛼𝜋𝜋 = 1 , if we check our lower bound on 𝜍𝜍  with 𝑇𝑇 = 20 , we find that 𝜍𝜍 >
0.042. Hence, this model is always feasible for any sufficiently large 𝑇𝑇 . Given that 𝑑𝑑0 >
0 for this model, and that for 𝑇𝑇 = 20, 𝑀𝑀 is a P-matrix, this is strongly suggestive of the 
existence of a unique solution for any 𝑞𝑞 and for arbitrarily large 𝑇𝑇 . 
3.4. The linearized Fernández-Villaverde et al. (2012) model 

The discussion of BPY might lead one to believe that multiplicity and non-existence 
is solely a consequence of overly aggressive monetary responses to output growth, and 
overly weak monetary responses to inflation. However, it turns out that in basic New 
                                                 
17 This was verified a second way by checking that −𝑀𝑀′ was an S0-matrix, as discussed in footnote 9. 
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Keynesian models with positive inflation in steady-state, and hence price dispersion, 
even without any monetary response to output growth, and even with extremely 
aggressive monetary responses to inflation, there are still multiple equilibria in some 
states of the world, and no solutions in others. Price level targeting is again sufficient to 
fix these problems though. 

We show these results in the Fernández-Villaverde et al. (2012) model, which is a 
basic non-linear New Keynesian model without capital or price indexation of non-
resetting firms, but featuring (non-valued) government spending and steady-state 
inflation (and hence price-dispersion). We refer the reader to the original paper for the 
model’s equations. After substitutions, the model has four non-linear equations which 
are functions of gross inflation, labour supply, price dispersion and an auxiliary variable 
introduced from the firms’ price-setting first order condition. Of these variables, only 
price dispersion enters with a lag. We linearize18 the model around its steady-state, and 
then reintroduce the “max” operator which linearization removed from the Taylor rule.19 
All parameters are set to the values given in Fernández-Villaverde et al. (2012). There 
is no term featuring output growth in the Taylor rule, so any multiplicity or non-
existence in this model cannot be a consequence of the mechanism highlighted by BPY. 

For this model, numerical calculations reveal that with 𝑇𝑇 ≤ 14 , 𝑀𝑀  is a P-matrix. 
However, with 𝑇𝑇 = 15, 𝑀𝑀 is neither a P nor an S matrix, and thus there are certainly 
some states of the world in which the model has multiple solutions, and others in which 
it has no solution at all.20 This also implies that 𝑀𝑀 is not a P-matrix for all larger 𝑇𝑇 . 
Furthermore, with 𝑇𝑇 = 1000, our upper bound on 𝜍𝜍 from Proposition 4 implies that 𝜍𝜍 ≤
0 + numerical error, providing evidence that 𝑀𝑀 is not an S-matrix for large 𝑇𝑇  either.21 

However, if we replace inflation in the monetary rule with the price level relative to 
its linear trend, which evolves according to: 

𝑥𝑥𝑝𝑝,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡−1 + 𝑥𝑥𝜋𝜋,𝑡𝑡 − 𝑥𝑥𝜋𝜋, (16) 
then with 𝑇𝑇 = 200 , we have that 𝑀𝑀  is an S-matrix, and the lower bound from 
Proposition 4 implies that 𝜍𝜍 > 0.003, and hence that for all sufficiently large 𝑇𝑇 , 𝑀𝑀 is an 
S-matrix, so there is always a feasible solution. 

                                                 
18 Prior to linearization, we first transform the model’s variables so that the transformed variables may take values on the entire real 
line. I.e. we work with the logarithms of labour supply, price dispersion and the auxiliary variable. For inflation, we note that 
inflation is always less than 𝜃𝜃

1
1−𝜀𝜀 (in the notation of Fernández-Villaverde et al. (2012)). Thus we work with a logit transformation 

of inflation over 𝜃𝜃
1

1−𝜀𝜀. This is generally more accurate than working with the logarithm of inflation. 
19 This procedure is discussed in more detail in section 5.1. 
20 That New Keynesian models might have no solution at all in some states of the world has also been discussed by Basu and 
Bundick (2015), though their mechanism only applies in the stochastic model. 
21 Since these results depend on the presence of the endogenous state, price dispersion, they are not directly related to the results of 
Davig and Leeper (2007). Further differences include the endogeneity of ZLB episodes here, and the fact that we are not making 
any restrictions on the solution space, which they do, as observed by Farmer, Waggoner, and Zha (2010). 
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3.5. The Smets and Wouters (2003) and Smets and Wouters (2007) models 
Smets and Wouters (2003) and Smets and Wouters (2007) are the canonical medium-

scale linear DSGE models, featuring assorted shocks, habits, price and wage indexation, 
capital (with adjustment costs), (costly) variable utilisation and quite general monetary 
policy reaction functions. The former model is estimated on Euro area data, while the 
latter is estimated on US data. The latter model also contains trend growth (permitting 
its estimation on non-detrended data), and a slightly more general aggregator across 
industries. However, overall, they are quite similar models, and any differences in their 
behaviour chiefly stems from differences in the estimated parameters. Since both 
models are incredibly well known in the literature, we omit their equations here, 
referring the reader to the original papers for further details.  

To assess the likelihood of multiple equilibria at or away from the zero lower bound, 
we augment each model with a ZLB on nominal interest rates, and evaluate the 
properties of each model’s 𝑀𝑀  matrix with large 𝑇𝑇  , at the estimated posterior-modes 
from the original papers. Note that we do not introduce an auxiliary for shadow nominal 
interest rates, so the monetary rules take the form of 𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, (1 − 𝜌𝜌𝑟𝑟)(⋯ ) +
𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1 + ⋯ �, in both cases. 

 
The Smets and Wouters (2003) model 

 
The Smets and Wouters (2007) model 

Figure 4: The diagonals of the 𝑴𝑴 matrices for the Smets and Wouters (2003; 2007) models 

 
As shown in Lemma 4, if the diagonal of the 𝑀𝑀 matrix ever goes negative, then the 

𝑀𝑀  matrix cannot be general positive semi-definite, semi-monotone, sufficient, P0 or 
copositive, and hence the model will sometimes have multiple solutions even when 
away from the zero lower bound (i.e. for some strictly positive 𝑞𝑞). In Figure 4, we plot 
the diagonal of the 𝑀𝑀 matrix for each model in turn,22 i.e. the impact on nominal interest 
rates in period 𝑡𝑡  of news in period 1  that a positive, magnitude one shock will hit 
nominal interest rates in period 𝑡𝑡. Immediately, we see that while in the US model, these 
impacts remain positive at all horizons, in the Euro area model, these impacts turn 

                                                 
22 The MOD files for the Smets and Wouters (2003) model were derived from the Macro Model Database (Wieland et al. 2012). 
The MOD files for the model were derived from files provided by Johannes Pfeifer here: http://goo.gl/CP53x5  

0 5 10 15 20 25 30 35 40
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

http://goo.gl/CP53x5


Page 27 of 45 

negative after just a few periods, and remain so at least up to period 40. Therefore, in 
the ZLB augmented Smets and Wouters (2003) model, there is not always a unique 
equilibrium. Furthermore, there are sequences of predicted future shocks (with positive 
density) for which the model without the ZLB would always feature positive interest 
rates, but for which the model with the ZLB could hit zero. 

It remains for us to assess whether 𝑀𝑀 is a P(0)-matrix or (strictly) semi-monotone for 
the Smets and Wouters (2007) model. Numerical calculations reveal that for 𝑇𝑇 < 9, 𝑀𝑀 
is a P-matrix, and hence is strictly semi-monotone. However, with 𝑇𝑇 ≥ 9, 𝑀𝑀 contains a 
6 × 6 principal sub-matrix (with indices 1,2,4,6,7,9) with negative determinant, which 
is neither an S nor an S0-matrix. Thus, for 𝑇𝑇 ≥ 9, 𝑀𝑀 is not a P(0)-matrix or (strictly) 
semi-monotone, and hence this model also has multiple equilibria, even when away 
from the bound. Given that the US has been at the ZLB for over eight years, that 𝑇𝑇  
ought to be greater than eight quarters seems uncontroversial. Hence, in both the Euro 
area and the US, we ought to take seriously the possibility that the existence of the ZLB 
produces non-uniqueness. Furthermore, it turns out that for neither model is 𝑀𝑀 an S-
matrix even with 𝑇𝑇 = 1000 , and thus for both models there are some 𝑞𝑞 ∈ ℝ1000  for 
which no solution exists. This is strongly suggestive of non-existence for some 𝑞𝑞 even 
for arbitrarily large 𝑇𝑇 . While placing a larger coefficient on inflation in the Taylor rule 
can make the Euro area picture more like the US one, with a strictly positive diagonal 
to the 𝑀𝑀 matrix, even with incredibly large coefficients, 𝑀𝑀 remained a non-P-matrix. 

Alternatively, suppose we replace the monetary rule in both models by: 
𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, (1 − 𝜌𝜌𝑟𝑟)�𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝑥𝑥𝑝𝑝,𝑡𝑡� + 𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1� 

where 𝜌𝜌𝑟𝑟 is as in the respective original model, where the price level 𝑥𝑥𝑝𝑝,𝑡𝑡 again evolves 
according to equation (16), and where 𝑥𝑥𝑦𝑦,𝑡𝑡 is output relative to its linear trend. Then, for 
both models, for all 𝑇𝑇  tested, 𝑀𝑀 was a P-matrix, and for the Euro area model we have 
that 𝜍𝜍 > 3 × 10−7 and for the US model we have that 𝜍𝜍 > 0.002. As one would expect, 
this result is also robust to departures from equal, unit, coefficients. Thus, price level 
targeting again appears to be sufficient for determinacy in the presence of the ZLB. 

4. Computation of solutions in the otherwise linear case 

4.1. On the difficulty of the problem 
We start with a note of caution. If no properties of the matrix 𝑀𝑀 are known a priori, 

then Problem 4 is provably a computationally difficult problem; more formally, it may 
be shown to be “strongly-NP complete” (Chung 1989), and this remains true even if 𝑀𝑀 
is restricted to be a P0 matrix (Kojima et al. 1991). This means that even if the inputs 𝑞𝑞 
and 𝑀𝑀 have descriptions which are of a polynomial length in 𝑇𝑇 , then if we could solve 
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Problem 4 in an amount of time that was polynomial in 𝑇𝑇  , we could also solve in 
polynomial time any problem for which the solution could be verified in polynomial 
time. In the language of computer science, this would mean that “P=NP”, something 
almost all computer scientists believe to be false. The strength of computer scientists’ 
conviction that this is not true is best exemplified by the fact that were P=NP, all 
commonly used forms of cryptography (such as those used to secure internet banking) 
could potentially be defeated. 

Since there is a bijection between solutions for Problem 4 and solutions for Problem 
2, this means that while forming expectations in linear models without occasionally 
binding constraints is computationally easy (polynomial algorithms exist for it), in 
models with OBCs, forming expectations may be incredibly difficult. It also means that 
we should be sceptical of claims of computational efficiency from other algorithms for 
solving models with OBCs. A proof that such algorithms actually ran in time 
polynomial in the number of state variables of the model, on all models, would again 
function as a proof that “P=NP”, since we showed in Proposition 2 that there is a model 
corresponding to any 𝑇𝑇 × 𝑇𝑇  𝑀𝑀 matrix, featuring polynomial in 𝑇𝑇  state variables. 

A natural response to this is that in macroeconomics, we are only concerned with 
approximate solutions, whereas the previous computational complexity results were for 
exact solutions. In fact, allowing approximation error will not change these results. Note 
that a sufficiently accurate approximation to the solution would tell us when the 
constraint binds in the exact solution. However, the difficulty of the exact LCP comes 
from the fact that there are 2𝑇𝑇  possible combinations of periods in which the constraint 
might bind, so no solution procedure can “quickly” tell us the periods constraint binds. 
Hence, the approximate problem cannot be easier than the original problem. More 
formally, we establish the following proposition in online appendix K. 

Proposition 15 For any problem in the form of Problem 2, let 𝒟𝒟∗ ⊆ ℝ𝑛𝑛, and 𝑝𝑝∗: 𝒟𝒟∗ →
𝒟𝒟∗ be an exact policy function for Problem 2, by which we mean that: 
1. For all 𝑥𝑥 ∈ 𝒟𝒟∗: 

𝑥𝑥1 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑝𝑝∗(𝑥𝑥) − 𝜇𝜇) + 𝐶𝐶1,⋅�𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)� − 𝜇𝜇��, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥 + 𝐵𝐵−1,⋅𝑝𝑝∗(𝑥𝑥) + 𝐶𝐶−1,⋅𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)�. 

2. For all 𝑥𝑥0 ∈ 𝒟𝒟∗, if 𝑥𝑥𝑡𝑡 = 𝑝𝑝∗(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+, then 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 
3. For all 𝑥𝑥0 ∉ 𝒟𝒟∗, there is no (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞ ⊆ ℝ𝑛𝑛 solving the given instance of Problem 2. 
Suppose that for all 𝜅𝜅, 𝜖𝜖 > 0, and for any problem in the form of Problem 2, we can 
calculate in time polynomial in 𝑛𝑛  a set 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛  with 𝒟𝒟∗ ⊆ 𝒟𝒟𝜅𝜅,𝜖𝜖  and an 
approximate policy function 𝑝𝑝𝜅𝜅,𝜖𝜖: 𝒟𝒟𝜅𝜅,𝜖𝜖 → ℝ𝑛𝑛 , where membership of 𝒟𝒟𝜅𝜅,𝜖𝜖  may be 
tested in time polynomial in 𝑛𝑛, where 𝑝𝑝𝜅𝜅,𝜖𝜖 may be evaluated in time polynomial in 𝑛𝑛, 
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and where for all 𝑥𝑥 ∈ 𝒟𝒟∗ with ‖𝑥𝑥 − 𝜇𝜇‖∞ < 𝜅𝜅, �𝑝𝑝∗(𝑥𝑥) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥)�∞ < 𝜖𝜖, then P=NP, i.e. 
all problems verifiable in polynomial time may be solved in polynomial time. 

Providing one believes (along with almost all of the computer science profession) that 
P≠NP, this provides a reductio ad absurdum of our assumption that there was a general 
procedure capable of providing the policy function 𝑝𝑝𝜖𝜖 in polynomial time. Thus, for 
example, global methods will never escape the curse of dimensionality in general 
models with OBCs, even using methods explicitly designed to do this such as that of 
Judd, Maliar, and Maliar (2012). In fact, even proving the finiteness of algorithms for 
solving these problems is non-trivial (see e.g. Csizmadia and Illés 2006), and, for 
example, there is no reason to believe that the iterations in Guerrieri and Iacoviello 
(2015) will converge in finite time on all models. 

Admittedly, for some special classes further discussed in online appendix L, it has 
been shown that the problem is solvable in polynomial time in 𝑇𝑇 . However, as discussed 
further in that appendix, it turns out that checking whether 𝑀𝑀 is in one of the relevant 
special cases is itself not possible in polynomial time, so this is of little use. The results 
there imply that were there a general algorithm running in time polynomial in the 
number of state variables for testing if a particular model, always had a unique solution 
or always had a unique solution when away from the bound, then that algorithm would 
also serve as a proof that P=NP, since Proposition 2 implies that a model could be 
constructed producing any given 𝑇𝑇 × 𝑇𝑇  𝑀𝑀 matrix, with polynomial in 𝑇𝑇  state variables. 
4.2. The mixed integer linear programming representation 

Given that there is no reason to believe that there is a polynomial time algorithm to 
solve the LCPs we encounter, it is important that we choose an algorithm, which, 
although it may not complete in polynomial time in the worst case, is nonetheless as 
computationally efficient as possible, particularly on average. One way to do this is to 
reduce the problem of finding an LCP to the solution of a problem for which highly 
efficient algorithms and computational libraries are available. One such problem is 
mixed integer linear programming (MILP), for which algorithms are included in most 
major optimisation suites (e.g. CPLEX, Gurobi, XPress MP, MOSEK, etc.). 
Conveniently, we can reduce the LCP problem to the MILP one in a way that gives not 
only a solution when one exists, but also a definite answer on whether or not there is a 
solution. This is an improvement over more naïve approaches, such as those of Holden 
(2010), Holden and Paetz (2012) or Guerrieri and Iacoviello (2015), for which a failure 
of convergence may just mean that the optimiser got stuck at some local minimum. 

To motivate the MILP representation, suppose that 𝑦𝑦 solves the LCP (𝑞𝑞, 𝑀𝑀). Then 𝑦𝑦 ≥
0 , 0 ≤ 𝑞𝑞 + 𝑀𝑀𝑦𝑦  and if 𝑦𝑦𝑗𝑗 > 0  then (𝑞𝑞 + 𝑀𝑀𝑦𝑦)𝑗𝑗 = 0 . Now let 𝜔𝜔� > 0  be an arbitrary 
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constant, let 𝛼𝛼 ≔ min�‖𝑦𝑦‖∞
−1, 𝜔𝜔�‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞

−1� > 0, (where ‖⋅‖∞ is the usual sup norm), let 
𝑦𝑦̂ ≔ 𝛼𝛼𝑦𝑦, let 1𝑇𝑇×1 be a 𝑇𝑇 × 1 vector of ones, and let 𝑧𝑧 ∈ {0,1}𝑇𝑇  be such that for all 𝑗𝑗 ∈
{1, … , 𝑇𝑇} , 𝑧𝑧𝑗𝑗 = 1  if and only if 𝑦𝑦𝑗𝑗 > 0  (i.e. 𝑧𝑧  is an indicator for being away from the 
bound). Then 0 ≤ 𝑦𝑦̂ ≤ 1𝑇𝑇×1  and 0 ≤ 𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ 𝛼𝛼‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞ ≤ 𝜔𝜔�1𝑇𝑇×1.  Now, if 𝑧𝑧𝑗𝑗 = 0 
for some 𝑗𝑗 ∈ {1, … , 𝑇𝑇}, then 𝑦𝑦𝑗𝑗 = 0.  Hence, in fact, 0 ≤ 𝑦𝑦̂ ≤ 𝑧𝑧. Likewise, if 𝑧𝑧𝑗𝑗 = 1, then 
𝑦𝑦𝑗𝑗 > 0, so since 𝑦𝑦 solves the LCP, 0 = 𝛼𝛼(𝑞𝑞 + 𝑀𝑀𝑦𝑦)𝑗𝑗 = (𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦)̂𝑗𝑗. Hence, similarly, 0 ≤
𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ 𝜔𝜔�(1𝑇𝑇×1 − 𝑧𝑧). Moreover, for any �̃�𝛼 > 𝛼𝛼, we claim that there is no 𝑧𝑧 ∈ {0,1}𝑇𝑇  
such that 0 ≤ �̃�𝛼𝑦𝑦 ≤ 𝑧𝑧  and 0 ≤ �̃�𝛼𝑞𝑞 + 𝑀𝑀(�̃�𝛼𝑦𝑦) ≤ 𝜔𝜔�(1𝑇𝑇×1 − 𝑧𝑧) . To see this, suppose for a 
contradiction that there were. Then �̃�𝛼‖𝑦𝑦‖∞ ≤ 1 , so 𝛼𝛼 < �̃�𝛼 ≤ ‖𝑦𝑦‖∞

−1 . Hence, 𝛼𝛼 =
𝜔𝜔�‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞

−1 . But, by assumption �̃�𝛼‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞ ≤ 𝜔𝜔� , hence 𝜔𝜔�‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞
−1 = 𝛼𝛼 < �̃�𝛼 ≤

𝜔𝜔�‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞
−1, which gives the required contradiction. Therefore, 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 are feasible for 

the following MILP problem (though they may not necessarily be the solution): 

Problem 6 Suppose 𝜔𝜔� > 0 , 𝑞𝑞 ∈ ℝ𝑇𝑇   and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   are given. Find 𝛼𝛼 ∈ ℝ , 𝑦𝑦̂ ∈ ℝ𝑇𝑇  , 
𝑧𝑧 ∈ {0,1}𝑇𝑇   to maximise 𝛼𝛼  subject to the following constraints: 𝛼𝛼 ≥ 0 , 0 ≤ 𝑦𝑦̂ ≤ 𝑧𝑧 , 0 ≤
𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ 𝜔𝜔�(1𝑇𝑇×1 − 𝑧𝑧). We call this the mixed integer linear programming (MILP) 
representation of the LCP (𝑞𝑞, 𝑀𝑀). 

A version of this representation with 𝜔𝜔� = 1  was first given by Pardalos and Rosen 
(1988), and its properties in that special case were proven by Rosen (1990). 

We now establish that solutions of the MILP representation are solutions of the LCP. 
Suppose that 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 solve Problem 6. If 𝛼𝛼 = 0, then there is no 𝛼𝛼 > 0 such that 0 ≤ 𝑦𝑦̂ ≤
𝑧𝑧, 0 ≤ 𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦̂ ≤ 𝜔𝜔�(1𝑇𝑇×1 − 𝑧𝑧). Now, we showed above that if the LCP (𝑞𝑞, 𝑀𝑀) had a 
solution, then there would be an 𝛼𝛼 > 0 , 𝑦𝑦 ̂ and 𝑧𝑧  which were feasible for Problem 6, 
hence, this 𝛼𝛼 > 0 provides a lower bound on the solution to Problem 6. Thus, if 𝛼𝛼 = 0, 
the LCP cannot have a solution. Alternatively, suppose 𝛼𝛼 > 0 . Then if for some 𝑗𝑗 ∈
{1, … , 𝑇𝑇}, 𝑧𝑧𝑗𝑗 = 1, then 0 = (𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦)̂𝑗𝑗, and if for some 𝑗𝑗 ∈ {1, … , 𝑇𝑇}, 𝑧𝑧𝑗𝑗 = 0, then 𝑦𝑦�̂�𝑗 =
0. Thus, 𝑦𝑦̂ ∘ (𝛼𝛼𝑞𝑞 + 𝑀𝑀𝑦𝑦)̂ = 0. Finally, define 𝑦𝑦 ≔ �̂�𝑦

𝛼𝛼 ≥ 0, hence 𝑦𝑦̂ = 𝛼𝛼𝑦𝑦, 0 ≤ 𝑞𝑞 + 𝑀𝑀𝑦𝑦 and 
𝑦𝑦 ∘ (𝑞𝑞 + 𝑀𝑀𝑦𝑦) = 0, i.e. 𝑦𝑦 solves the LCP (𝑞𝑞, 𝑀𝑀). This establishes the following result: 

Proposition 16 Suppose 𝜔𝜔� > 0, 𝑞𝑞 ∈ ℝ𝑇𝑇  and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  are given. If 𝑦𝑦 solves Problem 
4, then the solution to Problem 6 has  𝛼𝛼 ≥ min�‖𝑦𝑦‖∞

−1, 𝜔𝜔�‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞
−1�. If the solution to 

Problem 4 is unique, then this last inequality holds with equality, and 𝑦𝑦̂ = 𝛼𝛼𝑦𝑦 , 𝑧𝑧 =

�
1 if 𝑦𝑦𝑗𝑗 > 0
0 if 𝑦𝑦𝑗𝑗 = 0 in the solution to Problem 6. Conversely, if 𝛼𝛼, 𝑦𝑦,̂ 𝑧𝑧 solve Problem 6, then 

if 𝛼𝛼 = 0, Problem 4 has no solution, and if 𝛼𝛼 > 0, then 𝑦𝑦 ≔ �̂�𝑦
𝛼𝛼 solves Problem 4. 

This result establishes that we can use the MILP representation both to find out if the 
LCP problem has a solution, and to find a solution when one exists. Furthermore, by 
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varying 𝜔𝜔� we can determine which solution is returned, when there are multiple. In the 
limit as 𝜔𝜔� → 0, the MILP solver will return the solution which minimises ‖𝑞𝑞 + 𝑀𝑀𝑦𝑦‖∞, 
and in the limit as 𝜔𝜔� → ∞, the MILP solver will return the solution to the LCP which 
minimises ‖𝑦𝑦‖∞. The former objective would ensure that the returned solution does not 
generate large fluctuations in the path of the constrained variable, and the latter would 
reduce the fluctuations in other variables. Intermediate values of 𝜔𝜔� result in a solution 
being returned that features balanced concern for these two extremes. In practice, we 
suggest choosing 𝜔𝜔� = 𝜔𝜔‖𝑞𝑞‖∞  where 𝜔𝜔 > 0  is another constant, to ensure that the 
solution returned scales appropriately with 𝑞𝑞 . We suggest 𝜔𝜔 = 1000 , which places 
heavy weight on minimising ‖𝑦𝑦‖∞, without inducing numerical instabilities. It would 
also be possible to make 𝜔𝜔 stochastic in order to capture sunspot solutions to the model. 

We can further constrain the solution returned in the presence of multiplicity by 
solving Problem 6 first with 𝑇𝑇 = 0 (i.e. testing if 𝑞𝑞 ≥ 0), then with 𝑇𝑇 = 1, and so on. 
Doing this ensures that the time to finally escape the bound is minimised. 

5. Algorithms for general non-linear models, without perfect 
foresight 

Up to now, we have solely been concerned with the perfect foresight solution of 
models which were linear apart from the occasionally binding constraint. In this section, 
we will apply these insights to the solution of general non-linear models, allowing for 
future uncertainty, i.e. we attempt to solve the following general problem: 

Problem 7 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given and that 𝑓𝑓 : ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑐𝑐 × ℝ𝑚𝑚 → ℝ𝑛𝑛, 
𝑔𝑔, ℎ: ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑛𝑛 × ℝ𝑐𝑐 × ℝ𝑚𝑚 → ℝ𝑐𝑐  are given continuously 𝑑𝑑 ∈ ℕ+  times 
differentiable functions. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 and 𝑟𝑟𝑡𝑡 ∈ ℝ𝑐𝑐 for 𝑡𝑡 ∈ ℕ+ such that for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝔼𝔼𝑡𝑡𝑓𝑓 (𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡), 
𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡 max{ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡), 𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡)} 

where 𝜀𝜀𝑡𝑡~NIID(0, Σ), where the max operator acts elementwise on vectors, and where 
the information set is such that for all 𝑡𝑡 ∈ ℕ+, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 and 𝔼𝔼𝑡𝑡𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

We construct our algorithm in two steps. First, we present an algorithm which 
accounts for the effects of uncertainty that would be present even without the bound, 
but which treats hitting the bound as a probability zero event. Then, we extend the 
aforementioned algorithm to capture the risk of hitting the bound in the future. The 
algorithms are implemented in the author’s open source “DynareOBC” toolkit,23 which 
extends Dynare (Adjemian et al. 2011) with the ability to deal with OBCs. 

                                                 
23 Available from http://github.org/tholden/dynareOBC. 

http://github.org/tholden/dynareOBC
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5.1. Dealing with non-linearity other than the bounds 
Setup and assumptions Given a non-linear, but 𝑑𝑑 ∈ ℕ  times continuously 
differentiable model, a common practice in macroeconomics is to take a perturbation 
approximation to the model around its deterministic steady-state. Given that high order 
perturbation approximations are often unstable, the use of a “pruned” approximation 
(Kim et al. 2008) is usually advisable. We will proceed along similar lines, taking a 
perturbation approximation to the model ignoring the bound, and then imposing the 
bound on the approximated model. The advantage for our purposes of the pruned 
approximation is that the result is linear in an augmented state space, which will assist 
us transferring results from the linear case to the non-linear one. 

We start by making a further assumption that is necessary for us to be able to construct 
a perturbation approximation to the model without the bound. 

Assumption 4 In the setup of Problem 7, there exists 𝜇𝜇𝑥𝑥 ∈ ℝ𝑛𝑛 and 𝜇𝜇𝑟𝑟 ∈ ℝ𝑐𝑐 such that: 
0 = 𝑓𝑓 (𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0), 

𝜇𝜇𝑟𝑟 = max{ℎ(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0), 𝑔𝑔(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0)}, 
and such that for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, �ℎ(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0)�𝑎𝑎 ≠ �g(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0)�𝑎𝑎. 

This is necessary because if any of the constraints just bind in steady-state, then the 
equation defining the corresponding element of 𝜇𝜇𝑟𝑟  is not differentiable at 
(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0), preventing us from taking a perturbation approximation. 

Henceforth, we suppose without loss of generality that ℎ(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0) ≪
𝑔𝑔(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0). We claim that we may further assume without loss of generality 
that ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) ≡ 0. First, note we can rewrite the equation defining 𝑟𝑟𝑡𝑡 as: 
𝑟𝑟𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) + 𝔼𝔼𝑡𝑡 max{0, 𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) − ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡)}. 
Then if we define 𝑥𝑥�̂�𝑡 ≔ �

𝑥𝑥𝑡𝑡
𝑟𝑟𝑡𝑡

� for all 𝑡𝑡 ∈ ℕ, and: 

𝑔𝑔(̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡) ≔ 𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) − ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡), 
𝑓𝑓 (̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡) ≔ 𝑓𝑓 (𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑔𝑔1(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) + 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡), 

then for all 𝑡𝑡 ∈ ℕ+: 
0 = 𝔼𝔼𝑡𝑡𝑓𝑓 (̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡), 𝑟𝑟�̂�𝑡 = 𝔼𝔼𝑡𝑡 max{0, 𝑔𝑔(̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝑟𝑟�̂�𝑡, 𝜀𝜀𝑡𝑡)}, 

which is again in the form of Problem 7. Thus, without loss of generality, we can indeed 
assume that ℎ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡) ≡ 0, meaning that we work with the system: 

0 = 𝔼𝔼𝑡𝑡𝑓𝑓 (𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡), 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡 max{0, 𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡)}, 
where g(𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0) ≫ 0. 
First order approximations Now, suppose that we believe that a first order 
approximation gives adequate accuracy away from the bound. This system is locally 
𝑑𝑑 ≥ 1 times differentiable in a neighbourhood of (𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑟𝑟, 0), so we can certainly 



Page 33 of 45 

take a first order approximation around this point. Doing this gives the following 
approximation for the equation for 𝑟𝑟𝑡𝑡: 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑟𝑟 + 𝑔𝑔1(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔2(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔3𝔼𝔼𝑡𝑡(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔4(𝑟𝑟𝑡𝑡 − 𝜇𝜇𝑟𝑟) + 𝑔𝑔5𝜀𝜀𝑡𝑡, 
where 𝑔𝑔1, … , 𝑔𝑔5 are the matrices of partial derivatives of 𝑔𝑔 with respect to its first to 
fifth arguments, respectively. This approximation obviously completely ignores the 
bound. Thus, we propose to increase its accuracy by imposing the bound on the 
linearized equations, i.e. by instead working with the equation: 

𝑟𝑟𝑡𝑡 = max{0, 𝜇𝜇𝑟𝑟 + 𝑔𝑔1(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔2(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔3𝔼𝔼𝑡𝑡(𝑥𝑥𝑡𝑡+1 − 𝜇𝜇𝑥𝑥) + 𝑔𝑔4(𝑟𝑟𝑡𝑡 − 𝜇𝜇𝑟𝑟) + 𝑔𝑔5𝜀𝜀𝑡𝑡}. 
This gives a system of equations in nearly the same form as that for which we developed 
a solution algorithm in section 4, the only difference being the presence of expectations 
operators and uncertainty. In our base approach, we deal with these following the 
extended path algorithm of Fair and Taylor (1983). I.e., if we are currently in period 𝑡𝑡 
of a simulation, we assume that the agents in the model believe that for all 𝑠𝑠 > 𝑡𝑡, 𝜀𝜀𝑠𝑠 =
0. Thus, in each period of a simulation run, we merely have to solve a perfect foresight 
problem of the form of Problem 2, using the methods of section 4. We then advance one 
period, draw new shocks, and repeat the process. 

We can also use a slightly modified form of the representation of Problem 3 to track 
the endogenous “news” that is coming from the bound, following Holden and Paetz 
(2012). In particular, we are effectively replacing the bounded equations with equations 
of the form 𝑟𝑟𝑎𝑎,𝑡𝑡 = 𝔼𝔼𝑡𝑡�𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡)�𝑎𝑎 + 𝐼𝐼1,⋅𝑦𝑦𝑡𝑡

(𝑎𝑎), for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, where, for 

all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}: 
𝑦𝑦𝑇𝑇,𝑡𝑡

(𝑎𝑎) = 𝜂𝜂𝑇𝑇,𝑡𝑡
(𝑎𝑎), ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡

(𝑎𝑎) = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1
(𝑎𝑎) + 𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎),   
implying that 𝑦𝑦1,𝑡𝑡

(𝑎𝑎) = ∑ 𝜂𝜂𝑖𝑖,𝑡𝑡−𝑖𝑖
(𝑎𝑎)𝑇𝑇

𝑖𝑖=1 , where 𝜂𝜂𝑖𝑖,𝑡𝑡
(𝑎𝑎) contains the news about the likelihood of 

the 𝑎𝑎 th bound binding in period 𝑡𝑡 + 𝑖𝑖 . Whereas the 𝑦𝑦 s found by the LCP solver will 
always be positive, the implied 𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎) need not necessarily be positive, as shocks may hit 
today which result in the economy moving away from the bound. 
Higher order approximations Applying the methods of section 4 to models solved 
with a higher order approximation is slightly more difficult than in the linear case. 

Recall that in linear models, we started by introducing news shocks to the bounded 
equation(s) and stacking the impulse responses to these news shocks into the 𝑀𝑀 matrix. 
In order to use these impulse responses to tell us about the path of the bounded variable, 
we exploited the fact that the impulse response to a linear combination of shocks is the 
same linear combination of the individual impulse responses. It was this linearity that 
gave the 𝑞𝑞 + 𝑀𝑀𝑦𝑦 representation of the path of the bounded variable. 

Now, consider what would happen in a pruned or non-pruned second order 
approximation following a similar linear combination of shocks. Under such an 
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approximation, it is no longer true in general that the impulse response to a linear 
combination of shocks is a linear combination of the impulse responses, since the 
second order approximation captures interactions between the shocks. However, if the 
partial derivative of 𝑓𝑓  and 𝑔𝑔 with respect to each of the shocks being combined is zero, 
then the shocks only have second or higher order effects, hence, any interaction between 
them would be a fourth order effect or higher, and so would not be captured 
contemporaneously by the second order approximation. The period after the shocks hit, 
though, linearity would again be broken if a non-pruned second order approximation 
had been taken, since the slope of the response of the states to their lags vary with the 
states’ levels. This is not true under a second order pruned perturbation approximation 
though, since under such an approximation, the solution takes the form: 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2), 𝑥𝑥𝑡𝑡
(1) = 𝛼𝛼𝑥𝑥𝑡𝑡−1

(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥𝑡𝑡−1

(2) + 1
2 𝛽𝛽22�𝑥𝑥𝑡𝑡−1

(1) ⊗ 𝑥𝑥𝑡𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥𝑡𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� + 1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

where 𝑥𝑥(0) ∈ ℝ𝑛𝑛 is a constant, 𝑥𝑥𝑡𝑡
(1) is the first order component of the approximation, 

𝑥𝑥𝑡𝑡
(2)  is the second order component of the approximation, and where 𝛽𝛽0  has zero 

columns corresponding to each shock with respect to which the partial derivatives of 𝑓𝑓  
and 𝑔𝑔 is zero (Kim et al. 2008). Thus, 𝑥𝑥𝑡𝑡

(1) does not respond to any shocks for which the 
partial derivatives of 𝑓𝑓  and 𝑔𝑔 are zero, and hence 𝑥𝑥𝑡𝑡

(2) and 𝑥𝑥𝑡𝑡 are linear in such shocks. 
In light of this discussion, in order to preserve the 𝑞𝑞 + 𝑀𝑀𝑦𝑦 representation, we just need 

to define 𝑀𝑀  as stacking the impulse responses of the bounded equation(s) to news 
shocks which hit the bounded equation(s) raised to the power of two, rather than in 
levels. This generalises to higher order pruned perturbation approximations as one 
would expect. Hence, in a 𝑑𝑑 th order pruned perturbation approximation, we replace the 
bounded equations with equations of the form 𝑟𝑟𝑎𝑎,𝑡𝑡 = 𝔼𝔼𝑡𝑡�𝑔𝑔(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑟𝑟𝑡𝑡, 𝜀𝜀𝑡𝑡)�𝑎𝑎 +
𝐼𝐼1,⋅𝑦𝑦𝑡𝑡

(𝑎𝑎), for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}, where, now, for all 𝑎𝑎 ∈ {1, … , 𝑐𝑐}: 
𝑦𝑦𝑇𝑇,𝑡𝑡

(𝑎𝑎) = 𝜅𝜅�𝜂𝜂𝑇𝑇,𝑡𝑡
(𝑎𝑎)�

𝑑𝑑
, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡

(𝑎𝑎) = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1
(𝑎𝑎) + 𝜅𝜅�𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎)�
𝑑𝑑
, 

where 𝜅𝜅 is a very small constant in order to ensure that the presence of the additional 
shocks does not have an unwanted risk effect elsewhere in the model. We obviously 
scale the impulse responses which make up 𝑀𝑀 by 1

𝜅𝜅 to correct for this. In practice, we 
do not actually need to augment the model we approximate (in, e.g. Dynare) with all of 
these additional equations. This is because in the limit as 𝜅𝜅 → 0, the generated impulse 
responses tend to the impulse responses used to construct the 𝑀𝑀 matrix at first order.24 

Hence, in order to impose the bound in non-linear models solved by perturbation, we 
can proceed much as we did at first order. At each time step, we first evaluate the 

                                                 
24 As the instant response must be the same, and the subsequent response is given by 𝑥𝑥𝑡𝑡 − 𝑥𝑥(0) = 𝛼𝛼�𝑥𝑥𝑡𝑡−1 − 𝑥𝑥(0)� in both cases. 
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expected path of the bounded variable(s), and stack the results in 𝑞𝑞 . Thanks to the 
augmented state space representation of pruned perturbation solutions, this is possible 
without any Monte-Carlo simulation, as we show in online appendix M. Then, we use 
the 𝑀𝑀 matrix derived from the first order approximation, and calculated as in section 
2.2 in the LCP (𝑞𝑞, 𝑀𝑀). Finally, we use the solution to this LCP to calculate the required 
offsets to each variable this period, again based on the first order approximation to the 
model. Since we are not actually augmenting the model’s state space, even for high 
degree approximations to the model, imposing the bound will not slow down simulation 
much more than it does at order one. 
5.2. Integrating over future uncertainty 

The downside to the approach discussed in the previous section is that the news 
shocks that hit the bounded equation(s) will not be conditionally mean zero, i.e. 
𝔼𝔼𝑡𝑡−1𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎) ≠ 0. For example, in a model with a zero lower bound on nominal interest 
rates, stochastic discount factors, and persistence in these discount factors, the higher is 
the state of the discount factor, the higher the chances of hitting the bound today, thus 
𝔼𝔼𝑡𝑡−1𝜂𝜂𝑖𝑖,𝑡𝑡

(𝑎𝑎)  will be decreasing in this state. This failure of rationality with respect to 
expectations at the bound stems from the fact that we are still treating the bound in a 
pseudo-perfect foresight manner. In each period, agents act as if they believed that no 
future news shocks would ever hit the bounded equation. Due to the strict convexity of 
the 𝑥𝑥 ↦ max{0, 𝑥𝑥} mapping and Jensen’s inequality, this manifests itself as a systematic 
downward bias in expectations of 𝑟𝑟𝑡𝑡. 

To rectify this bias, we need to integrate over future uncertainty to calculate the 
expectation of the cumulated news shocks (the elements of 𝑦𝑦). We do this following the 
stochastic extended path approach of Adjemian and Juillard (2013). However, in our 
context this will be much easier than in the general fully non-linear context of Adjemian 
and Juillard (2013). In particular, in the basic algorithm of that paper, to integrate over 
𝑆𝑆 periods of future uncertainty, in a model with 𝑚𝑚 shocks, they have to solve the perfect 
foresight model 𝑝𝑝𝑚𝑚𝑆𝑆 times, for some constant 𝑝𝑝 ≥ 2. While they are able to reduce this 
somewhat through the removal of low weighted quadrature nodes to produce a sparse 
tree of shocks, the resulting distribution of paths will significantly under-estimate the 
true variance of the model, and they still have to solve the perfect foresight model many 
more times when the number of shocks is high. 

In our context, we will be able to do much better. In particular, we will be able to 
attain comparable accuracy with the evaluation of only a polynomial in 𝑆𝑆 number of 
solutions of the perfect foresight problem, regardless of the number of shocks in the 
model. Furthermore, since solving an LCP is much easier than solving a general fully 
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non-linear perfect foresight problem, each of these solutions is orders of magnitude 
faster for us. The key to our invariance to the number of shocks in the model is the fact 
that in the absence of any bounds, we are able to write down a closed form expression 
for the conditional covariance of the bounded variables, thanks to the properties of 
pruned perturbation solutions. To be slightly more specific, suppose that 𝑤𝑤𝑡𝑡,𝑠𝑠  is the 
value the bounded variables would take at 𝑠𝑠 if the constraints did not apply from period 
𝑡𝑡 onwards. Then, we are able to calculate cov𝑡𝑡�𝑤𝑤𝑡𝑡,𝑡𝑡+𝑖𝑖, 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑗𝑗�, for 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 ∈ ℕ, without any 
numerical integration. The derivation of this is contained in online appendix N. 

For clarity of presentation, let us assume that there is a single bounded variable. As 
ever, the generalisation to multiple bounded variables will be straightforward. Now, 
ideally we would like to integrate over infinitely many periods of future uncertainty, but 
clearly this is not practical in reality. Instead, Adjemian and Juillard (2013) advocate 
integrating over 𝑆𝑆 ∈ ℕ+ periods of future uncertainty, and then ignoring uncertainty 
from period 𝑆𝑆 + 1 onwards. By introducing a “discontinuity” in time of this sort, we 
would risk getting spurious movement in the expected path of variables around 𝑆𝑆 
periods into the future. Indeed, this occurred in some early numerical experiments that 
took this approach. Instead then, we apply a smooth windowing function to the variance 
of shocks. In particular, if the “true” shock covariance matrix is Σ , then when 
considering uncertainty at horizon 𝑘𝑘, we instead use: 

Σ�𝑘𝑘 ≔ 1
2 �1 + cos �𝜋𝜋 min{𝑘𝑘 − 1, 𝑆𝑆}

𝑆𝑆 �� Σ. 

Even with a time varying covariance matrix, it is still straightforward to calculate: 
Ω𝑡𝑡 ≔ var𝑡𝑡�[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′�, 

following the calculations in online appendix N. Then for the purposes of integration, 
we make the approximation that: 

[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′~N�𝔼𝔼𝑡𝑡[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′, Ω𝑡𝑡�. 
Of course the cosine window is ad hoc, but so too is the step-function window used by 
Adjemian and Juillard (2013). The legitimacy of both come from the fact that as 𝑆𝑆 →
∞, the error in this approximation would go to zero were [𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′ really 
normally distributed. One further argument in favour of our cosine window is that it is 
widely used in signal processing due to its low distortion in the frequency domain (see 
e.g. Harris 1978). In this literature, it is termed the Hann or Hanning window. We also 
note that for most DSGE models, the additional error coming from the normal 
approximation will be minimal, since it is exact at first order, and higher order 
approximations are usually dominated by their first order terms. 

Given this normal approximation, integration is then relatively straightforward. We 
first take the Schur decomposition of Ω𝑡𝑡, giving Ω𝑡𝑡 = 𝑈𝑈𝐷𝐷𝑈𝑈′, where 𝑈𝑈 is an orthogonal 
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matrix and 𝐷𝐷 ≥ 0 is diagonal, with the elements sorted in decreasing order. To reduce 
the integration dimension without overly affecting accuracy, we set any elements of 𝐷𝐷 
which are less than some small multiple (e.g. 1%) of the maximum element of 𝐷𝐷 to 
zero, as these components are unlikely to have a big impact. Indeed, when 𝑆𝑆 is very 
large, it may be advisable to set all but the 𝑆𝑆  ̂largest elements of 𝐷𝐷 to zero, which means 
the cost of integration will scale in 𝑆𝑆  ̂ not 𝑆𝑆 . After these steps we that that 𝐷𝐷 =
�𝐷𝐷11 0

0 0� , where dim 𝐷𝐷11 = 𝑆𝑆 ̂× 𝑆𝑆 ̂ for some 𝑆𝑆 ̂ ≤ 𝑆𝑆 . Conformably partitioning 𝑈𝑈  as 

𝑈𝑈 = �𝑈𝑈⋅1 𝑈𝑈⋅1
′ � ,and defining Λ ≔ 𝑈𝑈⋅1�𝐷𝐷11 , we then have that ΛΛ′ ≈ Ω𝑡𝑡 . Then if 

𝜁𝜁~N�0, 𝐼𝐼𝑆𝑆�̂ , then �𝔼𝔼𝑡𝑡[𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′� + Λ𝜁𝜁  has approximately the same 
distribution as [𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′ . We have thus transformed the problem of 
integrating over the distribution of [𝑤𝑤𝑡𝑡,𝑡𝑡+1 ⋯ 𝑤𝑤𝑡𝑡,𝑡𝑡+𝑆𝑆]′ to that of integrating over the 
𝑆𝑆  ̂ independent standard normals making up 𝜁𝜁 . We do this using either quasi-Monte 
Carlo methods, the sparse nested Gaussian cubature rules of Genz and Keister (1996), 
or the equal weight degree 3 monomial cubature rule with 2𝑆𝑆 ̂ + 1 nodes25. Of course, 
ideally we would like to break the domain of integration into pieces on which the 
integrand was differentiable, but this is not computationally practical for even 
moderately large 𝑆𝑆 .̂26 We discuss the merits of these rules in online appendix O. 

Whichever approach to integration is taken, we end with an approximation to the 
expected value of the “𝑦𝑦” vector of cumulated news shocks needed to impose the bound. 
This 𝑦𝑦 will imply a set of news shocks that hit today, just as it does when we ignore 
future uncertainty. We can thus proceed with the simulation exactly as we do in the case 
without integrating over future uncertainty. 
5.3. Performance of our algorithm 

The accuracy of the numerical algorithm presented in this paper is almost an 
immediate consequence of results from the prior literature. In particular, Guerrieri and 
Iacoviello (2015) showed the surprising accuracy of a perfect foresight solution to an 
otherwise linear approximation to a stochastic non-linear model with occasionally 
binding constraints. When a first order approximation is taken to the underlying model, 
and there is a unique solution, our method will produce exactly the same answers as that 
of Guerrieri and Iacoviello (2015).27 Relative to their method, our method improves 

                                                 
25 While there is a degree 3 monomial cubature rule with only 2𝑆𝑆 ̂nodes, including the 0 node generally increases accuracy at no 
cost, since we are evaluating the point anyway. As well as the 0 node, we evaluate at ± 1

2
�2 + 4𝑆𝑆 ̂with respect to each coordinate, 

which is easily shown to give a degree 3 rule. The use of monomial rules has been promoted by e.g. Judd and Skrainka (2011). 
26 For example, with 𝑆𝑆̂ = 1, there are at least as many discontinuities as there are non-zero elements in Λ. While we could get the 
full set of discontinuities at arbitrary dimension using a parametric linear complementarity problem solver such as that of Jones 
and Morrari (2006) which works providing that 𝑀𝑀 is general positive semi-definite, this is computationally intractable for 𝑆𝑆 ̂or 𝑇𝑇 
bigger than (about) ten, and integrating over all of these regions separately is computationally intractable even for much smaller 𝑆𝑆.̂ 
27 This point was noted by Guerrieri and Iacoviello (2015) with respect to the solution algorithm by Holden and Paetz (2012). 
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along four dimensions. Firstly, our method is guaranteed to produce a result in finite 
time. Secondly, it gives guarantees about which solution is selected when there are 
multiple. Thirdly, it also applies to higher order pruned perturbation solutions to the 
underlying model. Given the evidence that higher order pruned perturbations solutions 
are considerably more accurate than first order approximations (see e.g. Lan and Meyer-
Gohde 2013b), this is likely to produce substantial accuracy gains, particularly as OBCs 
are usually located far from the steady-state. Finally, our method takes future 
uncertainty into account, meaning that it captures precautionary effects, unlike the 
Guerrieri and Iacoviello (2015) method. That integrating over future uncertainty usually 
increases accuracy in non-linear models has been established by Adjemian and Juillard 
(2013), so here too substantial accuracy gains are almost certain. Nonetheless, in the 
rest of this section, we give some further brief indications of the accuracy and speed of 
our approach, by applying it to two indicative non-linear models with OBCs. 
A model with a closed form solution We first apply our method to a model for which 
we can calculate an exact closed form solution, giving very reliable accuracy measures. 
The model has the property that integrating over a single period of uncertainty is enough 
for accuracy, making it an ideal test of the performance of different cubature rules. 

Suppose the representative household in an economy chooses consumption 𝐶𝐶𝑡𝑡 and 

zero net supply bond holdings 𝐵𝐵𝑡𝑡  to maximise 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 𝐶𝐶𝑡𝑡+𝑘𝑘
1−𝛾𝛾−1
1−𝛾𝛾

∞
𝑘𝑘=0   subject to the 

restriction that 𝐴𝐴𝑡𝑡 + 𝑅𝑅𝑡𝑡−1𝐵𝐵𝑡𝑡−1 = 𝐶𝐶𝑡𝑡 + 𝐵𝐵𝑡𝑡 for all 𝑡𝑡 ∈ ℤ, where 𝐴𝐴𝑡𝑡’s evolution is given by: 
log 𝐴𝐴𝑡𝑡 = log 𝐴𝐴𝑡𝑡−1 + 𝑔𝑔𝑡𝑡 , where 𝑔𝑔𝑡𝑡 = max{0, (1 − 𝜌𝜌)𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡−1 + 𝜎𝜎𝜀𝜀𝑡𝑡}  and 𝜀𝜀𝑡𝑡~N(0,1) . 
This specification may be thought of as capturing the fact that technologies cannot be 
un-invented. Market clearing implies 𝐴𝐴𝑡𝑡 = 𝐶𝐶𝑡𝑡 and 𝐵𝐵𝑡𝑡 = 0 for all 𝑡𝑡 ∈ ℤ, and from this, a 
closed form expression for 𝑅𝑅𝑡𝑡 may be derived.28 Using this, we define simulation errors 
as the gap between the true value of log 𝑅𝑅𝑡𝑡 and the simulated value.29 In Table 1, we 
report errors along simulated paths of length 1000 , after discarding an initial 100 
periods of burn-in, where for simulation, we used the following parameters: 𝛽𝛽 ≔ 0.99, 
𝛾𝛾 ≔ 5 , 𝑔𝑔̅ ≔ 0.05 , 𝜌𝜌 ≔ 0.95 , 𝜎𝜎 ≔ 0.07 . All cubature runs involve integrating over a 
single period of future uncertainty. We also report errors from the model with the bound 
removed, for comparison. 

As may be seen from Table 1, our algorithm is generally very fast, as imposing the 
bound only doubles the running time without cubature. While this is a very simple 
model, the advantage of our algorithm is that running times are almost independent of 

                                                 
28 In particular, 𝑅𝑅𝑡𝑡 =

⎣
⎢⎡

𝛽𝛽
2 �1 − erf ��2

2𝜎𝜎 𝜇𝜇𝑡𝑡� + �1 + erf ��2
2𝜎𝜎 �𝜇𝜇𝑡𝑡 − 𝛾𝛾𝜎𝜎2��� exp �𝜎𝜎2𝛾𝛾2

2 − 𝛾𝛾𝜇𝜇𝑡𝑡��
⎦
⎥⎤

−1

, where 𝜇𝜇𝑡𝑡 = (1 − 𝜌𝜌)𝑔𝑔̅ + 𝜌𝜌𝑔𝑔𝑡𝑡. 

29 We also recorded errors in 𝑔𝑔𝑡𝑡, but these were essentially zero for all simulation runs. 



Page 39 of 45 

the complexity of the model, so similar running times can be expected with even much 
larger models. These results also show that our algorithm is quite accurate, providing 
cubature is used. Without cubature, accuracy is below the accuracy of the first order 
approximation to the model without a bound. Since without cubature, at first order, our 
method will give identical answers to that of Guerrieri and Iacoviello (2015), this 
suggests that neither their algorithm nor ours without cubature can deliver comparable 
accuracy to that delivered by linearization in models without bounds. However, with 
cubature and a second order approximation, we can deliver errors that are lower in the 
model with the bound to those in the first order approximation to the model without the 
bound. As might be expected, quasi-Monte Carlo with many points is the most accurate 
integration method, but it does come at a significant time cost. 
 

Bound in 
Model Order Cubature Seconds30 

Mean Abs 
Error 

Root Mean 
Squared 

Error 
Max Abs 

Error 

Mean Abs 
Error at 
Bound31 

No 1 N/A 66 6.13E-04 6.13E-04 6.13E-04  
No 2 N/A 62 1.52E-17 2.36E-17 1.67E-16  
No 3 N/A 53 1.99E-17 2.72E-17 1.11E-16  
Yes 1 No 141 3.67E-03 6.05E-03 1.31E-02 1.31E-02 
Yes 2 No 139 3.76E-03 6.39E-03 1.37E-02 1.37E-02 
Yes 3 No 140 3.76E-03 6.39E-03 1.37E-02 1.37E-02 
Yes 1 Monomial, Degree 3 274 7.32E-04 8.45E-04 1.88E-03 7.40E-04 
Yes 2 Monomial, Degree 3 1537 4.18E-04 6.73E-04 1.97E-03 1.28E-04 
Yes 3 Monomial, Degree 3 1397 4.18E-04 6.73E-04 1.97E-03 1.28E-04 
Yes 2 Sparse, Degree 3 1794 9.65E-04 1.67E-03 3.85E-03 3.85E-03 
Yes 2 Sparse, Degree 5 1840 9.65E-04 1.67E-03 3.85E-03 3.85E-03 
Yes 2 Sparse, Degree 7 2009 5.25E-04 9.30E-04 2.17E-03 2.17E-03 
Yes 2 QMC, 15 Points 1965 9.12E-04 1.27E-03 2.17E-03 2.17E-03 
Yes 2 QMC, 31 Points 2214 5.98E-04 8.17E-04 1.39E-03 1.39E-03 
Yes 2 QMC, 63 Points 3184 4.04E-04 5.49E-04 9.55E-04 9.55E-04 
Yes 2 QMC, 1023 Points 5197 1.57E-04 2.30E-04 4.45E-04 4.45E-04 

Table 1: Accuracy in the model of bounded productivity growth 

A model for which log-linearization gives an exact solution in the absence of 
bounds We next apply our procedure to a model for which log-linearization gives the 
exact solution when bounds are removed, but which features quite different behaviour 
when bounds are included, due to precautionary effects. This allows us to isolate the 
inaccuracy coming from the presence of an occasionally binding constraint. 

                                                 
30 All timings are “wall” time, and include time spent starting the parallel pool, time spent compiling code (although written in 
MATLAB, DynareOBC generates and compiles C code for key routines), and time spent calculating accuracy. Code was run on 
one of the following (very similar) twenty core machines: 2x E5-2670 v2 2.5GHz, 64GB RAM; 2x E5-2660 v3 2.6GHz, 128GB 
RAM. Use of machines with network attached storage means that there may be some additional variance in these timings.  
31 Errors conditional on the bounded variable being less than 0.0001. The numbers for this column would be identical had we used 
root mean squared errors or maximum absolute errors, conditional on being at the bound. 
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The model is a real business cycle model with a 100% depreciation rate (following 
Brock and Mirman (1972)), endogenous labour supply, and a lower bound on capital.  
The bound on capital may be thought of as an extreme case of a capital adjustment cost, 
with output falling to zero if the new level of capital is below the bound. To be more 
specific, the social planner chooses consumption, 𝐶𝐶𝑡𝑡, labour effort, 𝐿𝐿𝑡𝑡, and capital, 𝐾𝐾𝑡𝑡, 
to maximise 𝔼𝔼𝑡𝑡 ∑ 𝛽𝛽𝑘𝑘 �log 𝐶𝐶𝑡𝑡+𝑘𝑘 − 𝐿𝐿𝑡𝑡+𝑘𝑘

1+𝜈𝜈

1+𝜈𝜈 �∞
𝑘𝑘=0 , subject to the capital constraint 𝐾𝐾𝑡𝑡 ≥ 𝜃𝜃𝐾𝐾𝑡𝑡−1, 

and to the budget constraint 𝐶𝐶𝑡𝑡 + 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐾𝐾𝑡𝑡−1
𝛼𝛼 𝐿𝐿𝑡𝑡

1−𝛼𝛼 , where productivity, 𝐴𝐴𝑡𝑡 , 
evolves according to 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1

𝜌𝜌 exp 𝜀𝜀𝑡𝑡, where 𝜀𝜀𝑡𝑡~N�0, 𝜎𝜎2�. The first order conditions of 
the model imply that (1 − 𝛼𝛼) 𝑌𝑌𝑡𝑡

𝐶𝐶𝑡𝑡
= 𝐿𝐿𝑡𝑡

1+𝜈𝜈  and that 1
𝐶𝐶𝑡𝑡

− 𝜆𝜆𝑡𝑡 = 𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡
𝑌𝑌𝑡𝑡+1

𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡
− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1 , 

where 𝜆𝜆𝑡𝑡  is the KKT-multiplier on the borrowing constraint. To convert the KKT 
conditions into a form amenable to simulation by our algorithm, note that the bound 
implies that 1

𝐶𝐶𝑡𝑡
= 1

𝑌𝑌𝑡𝑡−𝐾𝐾𝑡𝑡
≥ 1

𝑌𝑌𝑡𝑡−𝜃𝜃𝐾𝐾𝑡𝑡−1
 , and the positivity of 𝜆𝜆𝑡𝑡  implies that 1

𝐶𝐶𝑡𝑡
≥

𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡
𝑌𝑌𝑡𝑡+1

𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡
− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1. Furthermore, by the KKT conditions, at least one of these 

constraints always binds. Hence, 1
𝐶𝐶𝑡𝑡

= max� 1
𝑌𝑌𝑡𝑡−𝜃𝜃𝐾𝐾𝑡𝑡−1

, 𝛼𝛼𝛽𝛽𝔼𝔼𝑡𝑡
𝑌𝑌𝑡𝑡+1

𝐶𝐶𝑡𝑡+1𝐾𝐾𝑡𝑡
− 𝛽𝛽𝜃𝜃𝔼𝔼𝑡𝑡𝜆𝜆𝑡𝑡+1�. In the 

following, we set 𝛼𝛼 = 0.3, 𝛽𝛽 = 0.99, 𝜈𝜈 = 2, 𝜃𝜃 = 0.99, 𝜌𝜌 = 0.95 and 𝜎𝜎 = 0.01. 
In order to have a comparator for accuracy tests, we first solve the model globally to 

a high degree of accuracy, using value function iteration on a fine grid. Full details of 
the global solution procedure are given in appendix P, where we also plot the value and 
policy functions for the problem. Note, that as 𝐾𝐾𝑡𝑡−1 → ∞, in order to avoid violating 
the constraint, the solution must feature 𝐿𝐿𝑡𝑡 → ∞. Thus, whereas in the original model 
without bound, the value function is monotonic increasing in capital, in the model with 
bound, the value function is decreasing in capital for large enough capital levels. This 
significantly changes behaviour when away from the bound, as the planner will increase 
consumption now to avoid having too much capital in future. 

To assess the extent to which integrating over future uncertainty captures these effects, 
we compare the value of consumption implied by the global solution procedure to that 
implied by our solution procedure with different values for 𝑆𝑆 (the number of periods of 
future uncertainty considered). In particular, we construct a sparse grid by drawing 
1023 Quasi-Monte Carlo (Sobol 1967) points from the stationary joint distribution of 
[log 𝐾𝐾𝑡𝑡−1 , log 𝐴𝐴𝑡𝑡]  in the model without bounds,32  then for each grid point, our error 
measure is the difference between the value of log 𝐶𝐶𝑡𝑡 implied by our algorithm at order 
2,33 and that implied by the global procedure. The mean absolute values of these errors 
over the grid are shown in Figure 5 for the fastest and slowest integration rules used for 

                                                 
32 This is very similar to the stationary distribution of the model with the bound, but is much easier to sample from. 
33  While the model without bounds may be exactly simulated via log-linearization, the bound introduces additional non-log-
linearities which means there are substantial gains from higher order approximations. 
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the previous model, with 𝑆𝑆 = 0, … ,20 . It may be seen that integrating over future 
uncertainty produces reasonable accuracy gains in this model, with accuracy initially 
increasing as more periods of future uncertainty are considered. Accuracy eventually 
plateaus out as other sources of inaccuracy come to dominate, such as the limited order 
of perturbation approximation, and the imperfections of the integration rules. 
Surprisingly, for this model, the faster, monomial rule actually produces more accurate 
results at these horizons. This is perhaps due to the fact that the monomial rule places 
more weight on the tails of the distribution, better capturing the area in which the model 
is at the bound. These results suggest that this fast monomial rule may often have 
adequate performance in practice, removing the need to use slower integration rules, 
which may be prohibitively costly in large models, such as those used for policy. 

 
Figure 5: Effect on accuracy of increasing the number of periods of uncertainty considered 

6. Conclusion 

This paper provides the first theoretical results on existence and uniqueness for 
otherwise linear models with occasionally binding constraints. It also presents the first 
solution algorithm for such models that is guaranteed to return an answer in finite time. 
As such, it may be thought of as doing for models with OBCs what Blanchard and Kahn 
(1980) did for linear models. 

We provided necessary and sufficient conditions for the existence of a unique 
equilibrium, as well as such conditions for uniqueness when away from the bound. In 
our application to New Keynesian models, we showed that these conditions were 
violated in entirely standard models, rather than being an artefact of strange policy rules, 
as one might have inferred from the results of Brendon, Paustian, and Yates (2015). In 
the presence of multiplicity, there is the potential for additional endogenous volatility 
from sunspots, so the welfare benefits of avoiding multiplicity may be substantial. 
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Additionally, as we saw in Figure 2, the additional equilibria may feature huge drops in 
output, giving further welfare reasons for their avoidance. The possibility of self-
fulfilling jumps and returns from the ZLB also gives an alternative rationale for the neo-
Fisherian view that argues that raising interest rates may raise inflation at the ZLB.34 

Luckily, our results suggest that a determinate equilibrium may be produced in 
standard New Keynesian models if the central bank switches to targeting the price level, 
rather than the inflation rate. This provides an additional argument for price level 
targeting in the presence of a zero lower bound to those made by Basu and Bundick 
(2015) and Coibion, Gorodnichenko, and Wieland (2012). Indeed, it is possible that 
Coibion, Gorodnichenko, and Wieland’s results on the welfare benefits of price level 
targeting were actually driven by having inadvertently selected one of the worse 
equilibria under inflation targeting, since they use a solution algorithm for the otherwise 
linear model which gives no guarantees on the returned equilibrium. 

In addition, we provided conditions for existence of any solution converging to the 
“good” steady-state at all, and showed that under inflation targeting, standard New 
Keynesian models again failed to satisfy these conditions in some states of the world. 
Whereas the literature started by Benhabib, Schmitt-Grohé, and Uribe (2001a; 2001b) 
showed that the existence of a “bad” steady-state may imply additional volatility if 
agents long-run beliefs are not pinned down by the inflation target, here we showed that 
in some states of the world, under inflation targeting there is no way for the economy to 
converge to the “good” steady-state. This in turn implies that agents cannot place prior 
certainty on converging to the “good” steady-state, thus rationalising the beliefs 
required to get the kind of global multiplicity at the zero lower bound that these and 
other authors have focussed on. Once again though, we showed that price level targeting 
is sufficient to restore existence and determinacy. 

We also showed that price level targeting ensures that computing expectations is a 
computationally “easy” problem (i.e. polynomial time), whereas under inflation 
targeting, it is as difficult as the computational problems used to secure private 
communications, increasing the chance that agents would make mistakes in forming 
expectations. Given that there are often substantial welfare costs to failures in 
rationality, this provides yet further arguments in favour of price level targeting. 

This paper has also presented the first algorithm for perfect foresight solutions of 
otherwise linear models with occasionally binding constraints that always completes in 
finite time, and which is able to detect when the model has no solution. The paper 
finished by exploiting this underlying solver to produce a robust, accurate and scalable 

                                                 
34 Theoretical and empirical evidence for this view is presented in Cochrane (2015). 
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simulation algorithm for general nonlinear models with occasionally binding 
constraints that was consistent with rational expectations. Code implementing all of the 
algorithms discussed here is contained in the author’s “DynareOBC” toolkit which 
augments the abilities of Dynare (Adjemian et al. 2011) with the ability to solve models 
with OBCs.35 
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A. Construction of a model with arbitrary 𝑴𝑴 matrix 

Let ℳ ∈ ℝ𝑇𝑇×𝑇𝑇 . Consider a model with the following equations: 
𝒶𝒶𝑡𝑡 = max{0, 𝒷𝒷𝑡𝑡}, 

𝒶𝒶𝑡𝑡 = 1 + � � ℳ𝑗𝑗,𝑘𝑘�𝒸𝒸𝑗𝑗−1,𝑘𝑘−1,𝑡𝑡 − 𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡�
𝑇𝑇

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1
+ 𝒹𝒹0,𝑡𝑡, 

𝒸𝒸0,0,𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡, 
𝒸𝒸0,𝑘𝑘,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝒸𝒸0,𝑘𝑘−1,𝑡𝑡+1, ∀𝑘𝑘 ∈ {1, … , 𝑇𝑇}, 

𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = 𝒸𝒸𝑗𝑗−1,𝑘𝑘,𝑡𝑡−1, ∀𝑗𝑗 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘 ∈ {0, … , 𝑇𝑇}, 
𝒹𝒹𝑘𝑘,𝑡𝑡 = 𝒹𝒹𝑘𝑘+1,𝑡𝑡−1, ∀𝑘𝑘 ∈ {0, … , 𝑇𝑇 − 1}, 

𝒹𝒹𝑇𝑇,𝑡𝑡 = 0 
with steady-state 𝒶𝒶⋅ = 𝒷𝒷⋅ = 1, 𝒸𝒸𝑗𝑗,𝑘𝑘,⋅ = 0, 𝒹𝒹𝑘𝑘,⋅ = 0 for all 𝑗𝑗, 𝑘𝑘, ∈ {0, … , 𝑇𝑇}. Defining: 

𝑥𝑥𝑡𝑡 ≔ �𝒶𝒶𝑡𝑡 𝒷𝒷𝑡𝑡 �vec 𝒸𝒸⋅,⋅,𝑡𝑡�′ 𝒹𝒹⋅,𝑡𝑡
′ �′ 

and dropping expectations, this model is then in the form of Problem 2. 
Now consider the model’s Problem 3 type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇, 

where 𝑦𝑦⋅,⋅  is defined as in Problem 3. Thus, if 𝒸𝒸𝑗𝑗,𝑘𝑘,0 = 0  and 𝒹𝒹𝑘𝑘,0 = 0  for all 𝑗𝑗, 𝑘𝑘 ∈
{0, … , 𝑇𝑇}, then for all 𝑡𝑡 ∈ ℕ+, 𝑗𝑗, 𝑘𝑘 ∈ {0, … , 𝑇𝑇}: 

𝒸𝒸0,𝑘𝑘,𝑡𝑡 = �𝑦𝑦𝑡𝑡+𝑘𝑘,0 if 𝑡𝑡 + 𝑘𝑘 ≤ 𝑇𝑇
0 if 𝑡𝑡 + 𝑘𝑘 > 0

, 

𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = �𝒸𝒸0,𝑘𝑘,𝑡𝑡−𝑗𝑗 if 𝑡𝑡 − 𝑗𝑗 > 0
0 if 𝑡𝑡 − 𝑗𝑗 ≤ 0 = �𝑦𝑦𝑡𝑡+𝑘𝑘−𝑗𝑗,0 if 𝑡𝑡 − 𝑗𝑗 > 0, 𝑡𝑡 + 𝑘𝑘 − 𝑗𝑗 ≤ 𝑇𝑇

0 otherwise
. 

Hence, for all 𝑡𝑡 ∈ ℕ+, 𝑗𝑗, 𝑘𝑘 ∈ {1, … , 𝑇𝑇}: 
𝒸𝒸𝑗𝑗−1,𝑘𝑘−1,𝑡𝑡 − 𝒸𝒸𝑗𝑗,𝑘𝑘,𝑡𝑡 = �𝑦𝑦𝑡𝑡+𝑘𝑘−𝑗𝑗,0 if 𝑡𝑡 − 𝑗𝑗 = 0, 𝑡𝑡 + 𝑘𝑘 − 𝑗𝑗 ≤ 𝑇𝑇

0 otherwise
= �𝑦𝑦𝑘𝑘,0 if 𝑡𝑡 = 𝑗𝑗

0 otherwise
. 

Therefore, for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}: 

𝒶𝒶𝑡𝑡 − 1 = � ℳ𝑡𝑡,𝑘𝑘𝑦𝑦𝑘𝑘,0

𝑇𝑇

𝑘𝑘=1
. 

Consequently, if 𝑦𝑦𝑘𝑘,0 = 𝐼𝐼⋅,𝑙𝑙 for some 𝑙𝑙 ∈ {1, … , 𝑇𝑇}, then 𝒶𝒶𝑡𝑡 − 1 = ℳ𝑡𝑡,𝑙𝑙 (i.e. the relative 
impulse response to a news-shock at horizon 𝑙𝑙) is the 𝑙𝑙th column of ℳ. 
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Finally, note that in the model’s Problem 1 equivalent, if 𝒸𝒸𝑗𝑗,𝑘𝑘,0 = 0  for all 𝑗𝑗, 𝑘𝑘 ∈
{0, … , 𝑇𝑇}, then for all 𝑡𝑡 ∈ ℕ+, 𝒶𝒶𝑡𝑡 = 𝒷𝒷𝑡𝑡 = 𝒹𝒹0,𝑡𝑡 = 𝒹𝒹𝑡𝑡,0. Hence, if 𝒹𝒹⋅,0 = 𝓆𝓆 for some 𝓆𝓆 ∈
ℝ𝑇𝑇 , then 𝑞𝑞 = 𝓆𝓆 for this model. 

B. Construction of a static model with no dynamic solution in some 
states 

Consider the model: 
𝒶𝒶𝑡𝑡 = max{0, 𝒷𝒷𝑡𝑡} , 𝒶𝒶𝑡𝑡 = 1 − 𝒸𝒸𝑡𝑡, 𝒸𝒸𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡. 

The model has steady-state 𝒶𝒶 = 𝒷𝒷 = 1, 𝒸𝒸 = 0. Furthermore, in the model’s Problem 3 
type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇, 

where 𝑦𝑦⋅,⋅ is defined as in Problem 3, we have that: 

𝒸𝒸𝑡𝑡 = �𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
0 if 𝑡𝑡 > 𝑇𝑇

, 

so: 
𝒷𝒷𝑡𝑡 = �1 − 2𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

1 if 𝑡𝑡 > 𝑇𝑇
, 

implying: 
𝒶𝒶𝑡𝑡 = �1 − 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

1 if 𝑡𝑡 > 𝑇𝑇
. 

thus, 𝑀𝑀 = −𝐼𝐼  for this model. 

C. Proof of sufficient conditions for feasibility with 𝑻𝑻 = ∞ 

First, define 𝐺𝐺 ≔ −𝐶𝐶(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, and note that if 𝐿𝐿 is the lag (right-shift) operator, 
the model from Problem 1 can be written as: 

𝐿𝐿−1(𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶)(𝑥𝑥 − 𝜇𝜇) = 0. 
Furthermore, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

(𝐿𝐿 − 𝐺𝐺)(𝐵𝐵 + 𝐶𝐶𝐹𝐹)(𝐼𝐼 − 𝐹𝐹𝐿𝐿) = 𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶, 
so the stability of the model from Problem 1 is determined by the solutions for 𝑧𝑧 ∈ ℂ 
of the polynomial: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� = det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼 − 𝐹𝐹𝑧𝑧). 
Now by Assumption 1, all of the roots of det(𝐼𝐼 − 𝐹𝐹𝑧𝑧) are strictly outside of the unit 
circle, and all of the other roots of det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� are weakly inside the unit circle 
(else there would be indeterminacy), thus, all of the roots of det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) are weakly 
inside the unit circle.  Therefore, if we write 𝜌𝜌ℳ for the spectral radius of some matrix 
ℳ, then, by this discussion and Assumption 2, 𝜌𝜌𝐺𝐺 < 1. 
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Next, let 𝑠𝑠𝑡𝑡
∗, 𝑥𝑥𝑡𝑡

∗ ∈ ℝ𝑛𝑛×ℕ+ be such that for any 𝑦𝑦 ∈ ℝℕ+, the 𝑘𝑘th columns of 𝑠𝑠𝑡𝑡
∗𝑦𝑦 and 𝑥𝑥𝑡𝑡

∗𝑦𝑦 
give the value of 𝑠𝑠𝑡𝑡 and 𝑥𝑥𝑡𝑡 following a magnitude 1 news shock at horizon 𝑘𝑘, i.e. when 
𝑥𝑥0 = 𝜇𝜇 and 𝑦𝑦0 is the 𝑘𝑘th row of 𝐼𝐼ℕ+×ℕ+. Then: 

𝑠𝑠𝑡𝑡
∗ = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ + 𝐺𝐺𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+1,1:∞ + 𝐺𝐺2𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+2,1:∞ + ⋯ �

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1 �(𝐺𝐺𝐿𝐿)𝑘𝑘
∞

𝑘𝑘=0
𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ = 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞, 
where the infinite sums are well defined as 𝜌𝜌𝐺𝐺 < 1, and where 𝐼𝐼𝑡𝑡,1:∞ ∈ ℝ1×ℕ+ is a row 
vector with zeros everywhere except position 𝑡𝑡 where there is a 1. Thus: 

𝑠𝑠𝑡𝑡
∗ = �0𝑛𝑛×(𝑡𝑡−1) 𝑠𝑠1

∗� = 𝐿𝐿𝑡𝑡−1𝑠𝑠1
∗. 

Furthermore,  

(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗) = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠𝑘𝑘

∗
𝑡𝑡

𝑗𝑗=1
= � 𝐹𝐹𝑡𝑡−𝑗𝑗𝐿𝐿𝑗𝑗−1𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
, 

i.e.: 

(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)⋅,𝑘𝑘 = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠1,⋅,𝑘𝑘+1−𝑗𝑗

∗
𝑡𝑡

𝑗𝑗=1
= − � 𝐹𝐹𝑡𝑡−𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑘𝑘−𝑗𝑗𝐼𝐼⋅,1

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
, 

and so the 𝑘𝑘th offset diagonal of 𝑀𝑀 (𝑘𝑘 ∈ ℤ) is given by the first row of the 𝑘𝑘th column 
of: 

𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗) = 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑡𝑡−𝑗𝑗𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
= 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
, 

where we abuse notation slightly by allowing 𝐿𝐿−1 to give a result with indices in ℤ 
rather than ℕ+, with padding by zeros. Consequently, for all 𝑘𝑘 ∈ ℕ+, 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐹𝐹

𝑡𝑡 �, 
as 𝑡𝑡 → ∞ , for all 𝑡𝑡 ∈ ℕ+ , 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐺𝐺

𝑘𝑘 � , as 𝑘𝑘 → ∞ , and for all 𝑘𝑘 ∈ ℤ , 𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 −
lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛−1(𝜌𝜌𝐹𝐹𝜌𝜌𝐺𝐺)𝑡𝑡�, as 𝑡𝑡 → ∞. Hence, 

sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

exists and is well defined, and so: 
𝜍𝜍 = sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦, 

since every point in [0,1]ℕ+ is a limit (under the supremum norm) of a sequence of 
points in the set: 

�𝑦𝑦 ∈ [0,1]ℕ+�∃𝑇𝑇 ∈ ℕ s.t. ∀𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0�. 
Thus, we just need to provide conditions under which sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 

To produce such conditions, we need constructive bounds on 𝑀𝑀, even if they have 
slightly worse convergence rates. For any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 
𝜙𝜙 ∈ (𝜌𝜌ℳ, 1), let: 

𝒞𝒞ℳ,𝜙𝜙 ≔ sup
𝑘𝑘∈ℕ

��ℳ𝜙𝜙−1�𝑘𝑘�2. 
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Furthermore, for any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜖𝜖 > 0, let: 
𝜌𝜌ℳ,𝜖𝜖 ≔ max{|𝑧𝑧||𝑧𝑧 ∈ ℂ, 𝜎𝜎min(ℳ − 𝑧𝑧𝐼𝐼) = 𝜖𝜖}, 

where 𝜎𝜎min(ℳ − 𝑧𝑧𝐼𝐼)  is the minimum singular value of ℳ − 𝑧𝑧𝐼𝐼  , and let 𝜖𝜖∗(ℳ) ∈
(0, ∞] solve: 

𝜌𝜌ℳ,𝜖𝜖 = 1. 
(This has a solution in (0, ∞] by continuity as 𝜌𝜌ℳ < 1.) Then, by Theorem 16.2 of 
Trefethen and Embree (2005), for any 𝐾𝐾 ∈ ℕ and 𝑘𝑘 > 𝐾𝐾: 

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2��ℳ𝜙𝜙−1�𝑘𝑘−𝐾𝐾�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

Now, ��ℳ𝜙𝜙−1�𝐾𝐾�2 → 0 as 𝐾𝐾 → ∞, hence, there exists some 𝐾𝐾 ∈ ℕ such that: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

≥ sup
𝑘𝑘>𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2, 

meaning 𝒞𝒞ℳ,𝜙𝜙 = sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 . The quantity 𝜌𝜌ℳ,𝜖𝜖  (and hence 𝜖𝜖∗(ℳ) ) may 

be efficiently computed using the methods described by Wright and Trefethen (2001), 
and implemented in their EigTool toolkit36. Thus, 𝒞𝒞ℳ,𝜙𝜙 may be calculated in finitely 
many operations by iterating over 𝐾𝐾 ∈ ℕ until a 𝐾𝐾  is found which satisfies: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥ ��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

From the definition of 𝒞𝒞ℳ,𝜙𝜙, we have that for any 𝑘𝑘 ∈ ℕ and any 𝜙𝜙 ∈ (𝜌𝜌ℳ, 1): 
�ℳ𝑘𝑘�2 ≤ 𝒞𝒞ℳ,𝜙𝜙𝜙𝜙𝑘𝑘. 

Now, fix 𝜙𝜙𝐹𝐹 ∈ (𝜌𝜌𝐹𝐹 , 1) and 𝜙𝜙𝐺𝐺 ∈ (𝜌𝜌𝐺𝐺, 1),37 and define: 
𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

≔ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝒞𝒞𝐺𝐺,𝜙𝜙𝐹𝐹

�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2, 
then, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 � = �(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)1,𝑘𝑘 � ≤ �(𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗)⋅,𝑘𝑘�2 ≤ � �𝐹𝐹𝑡𝑡−𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑘𝑘−𝑗𝑗�2

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑡𝑡−𝑗𝑗𝜙𝜙𝐺𝐺
𝑘𝑘−𝑗𝑗

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘 (𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)− min{𝑡𝑡,𝑘𝑘} − 1
1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

. 

Additionally, for all 𝑡𝑡 ∈ ℕ+, 𝑘𝑘 ∈ ℤ: 
�𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘� = ��𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗)�1,𝑘𝑘 − � lim𝜏𝜏→∞ 𝐿𝐿−𝑡𝑡(𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗)�

1,𝑘𝑘
� 

≤
�
��
�

⎝
⎜⎛𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
− 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
∞

𝑗𝑗=0 ⎠
⎟⎞

⋅,𝑘𝑘�
��
�

2

 

=
�
��
�

⎝
⎜⎛ � 𝐹𝐹𝑗𝑗𝑠𝑠1,⋅,𝑗𝑗+𝑘𝑘+1

∗
∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} ⎠
⎟⎞

⋅,0�
��
�

2

 

                                                 
36 This toolkit is available from https://github.com/eigtool/eigtool, and is included in dynareOBC.  
37 In practice, we try a grid of values, as it is problem dependent whether high 𝜙𝜙𝐹𝐹 and low 𝒦𝒦�ℳ𝜙𝜙−1� is preferable to low 𝜙𝜙𝐹𝐹 and 
high 𝒦𝒦�ℳ𝜙𝜙−1�. 

https://github.com/eigtool/eigtool
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=
�
��
� � 𝐹𝐹𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑗𝑗+𝑘𝑘𝐼𝐼⋅,1

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} �
��
�

2

 

≤ � �𝐹𝐹𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑗𝑗+𝑘𝑘�2

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑗𝑗 𝜙𝜙𝐺𝐺
𝑗𝑗+𝑘𝑘

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
max{𝑡𝑡,−𝑘𝑘}𝜙𝜙𝐺𝐺

max{0,𝑡𝑡+𝑘𝑘}

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, 

so, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡� ≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. 

To evaluate lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡, note that this limit is the top element from the (𝑘𝑘 − 𝑡𝑡)th 

column of: 
𝑑𝑑 ≔ lim𝜏𝜏→∞ 𝐿𝐿−𝜏𝜏(𝑥𝑥𝜏𝜏

∗ − 𝜇𝜇∗) = 𝐿𝐿−1�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1𝑠𝑠1
∗

= −�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼0,−∞:∞, 
where 𝐼𝐼0,−∞:∞ ∈ ℝ1×ℤ is zero everywhere apart from index 0 where it equals 1. Hence, 
by the definitions of 𝐹𝐹 and 𝐺𝐺: 

𝐴𝐴𝐿𝐿−1𝑑𝑑 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐿𝐿𝑑𝑑 = −𝐼𝐼⋅,1𝐼𝐼0,−∞:∞. 
In other words, if we write 𝑑𝑑𝑘𝑘 in place of 𝑑𝑑⋅,𝑘𝑘 for convenience, then, for all 𝑘𝑘 ∈ ℤ: 

𝐴𝐴𝑑𝑑𝑘𝑘+1 + 𝐵𝐵𝑑𝑑𝑘𝑘 + 𝐶𝐶𝑑𝑑𝑘𝑘−1 = − �𝐼𝐼⋅,1 if 𝑘𝑘 = 0
0 otherwise

 

I.e. the homogeneous part of the difference equation for 𝑑𝑑−𝑡𝑡 is identical to that of 𝑥𝑥𝑡𝑡 −
𝜇𝜇. The time reversal here is intuitive since we are indexing diagonals such that indices 
increase as we move up and to the right in 𝑀𝑀, but time is increasing as we move down 
in 𝑀𝑀. 

It turns out that exploiting the possibility of reversing time is the key to easy 
evaluating 𝑑𝑑𝑘𝑘. First, note that for 𝑘𝑘 < 0, it must be the case that 𝑑𝑑𝑘𝑘 = 𝐹𝐹𝑑𝑑𝑘𝑘+1, since the 
shock has already “occurred” (remember, that we are going forwards in “time” when 
we reduce 𝑘𝑘). Now consider the model in which we are going forwards time when we 
increase 𝑘𝑘, i.e. the model with: 

𝐿𝐿�𝐴𝐴𝐿𝐿−1𝐿𝐿−1 + 𝐵𝐵𝐿𝐿−1 + 𝐶𝐶�𝑑𝑑 = 0, 
subject to the terminal condition that 𝑑𝑑𝑘𝑘 → 0 as 𝑘𝑘 → ∞, which must hold as we have 
already proved that the first row of 𝑀𝑀 converges to zero. Now, let 𝑧𝑧 ∈ ℂ, 𝑧𝑧 ≠ 0 be a 
solution to: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�, 
and define 𝑧𝑧 ̃ = 𝑧𝑧−1, so: 

0 = det�𝐴𝐴 + 𝐵𝐵𝑧𝑧 ̃ + 𝐶𝐶𝑧𝑧2̃� = 𝑧𝑧−2 det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�
= det(𝐼𝐼 − 𝐺𝐺𝑧𝑧)̃ det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼𝑧𝑧 ̃ − 𝐹𝐹). 

By Assumption 1, all of the roots of det(𝐼𝐼𝑧𝑧 ̃ − 𝐹𝐹) are inside the unit circle, thus they 
cannot contribute to the dynamics of the time reversed process, else the terminal 
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condition would be violated. Thus, the time reversed model has a unique solution 
satisfying the terminal condition with a transition matrix with the same eigenvalues as 
𝐺𝐺. Consequently, this solution can be calculated via standard methods for solving linear 
DSGE models, and it will be given by 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1 , for all 𝑘𝑘 > 0 , where 𝐻𝐻 =
−(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 = 𝜙𝜙𝐺𝐺 < 1, by Assumption 2. 

It just remains to determine the value of 𝑑𝑑0. By the previous results, this must satisfy: 
−𝐼𝐼⋅,1 = 𝐴𝐴𝑑𝑑1 + 𝐵𝐵𝑑𝑑0 + 𝐶𝐶𝑑𝑑−1 = (𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)𝑑𝑑0. 

Hence: 
𝑑𝑑0 = −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1. 

This gives a readily computed solution for the limits of the diagonals of 𝑀𝑀. Lastly, note 
that: 

�𝑑𝑑−𝑡𝑡,1� ≤ ‖𝑑𝑑−𝑡𝑡‖2 = ‖𝐹𝐹𝑡𝑡𝑑𝑑0‖2 ≤ ‖𝐹𝐹𝑡𝑡‖2‖𝑑𝑑0‖2 ≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡 ‖𝑑𝑑0‖2, 
and: 

�𝑑𝑑𝑡𝑡,1� ≤ ‖𝑑𝑑𝑡𝑡‖2 = ‖𝐻𝐻𝑡𝑡𝑑𝑑0‖2 ≤ ‖𝐻𝐻𝑡𝑡‖2‖𝑑𝑑0‖2 ≤ 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
𝜙𝜙𝐻𝐻

𝑡𝑡 ‖𝑑𝑑0‖2. 
We will use these results in producing our bounds on 𝜍𝜍. 

First, fix 𝑇𝑇 ∈ ℕ+, and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+ by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , 

and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇 , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) = 𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, then: 

𝜍𝜍 ≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

𝑦𝑦∞1∞×1
� ≥ max

𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
𝑦𝑦∞1∞×1

� 

= max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
⎨
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
� ,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>𝑇𝑇

�� �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
�
⎭�
��
⎬
��
�⎫

 

≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
�⎨
��
��
��
��
��
⎧

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞ ⎦
⎥⎥
⎥⎥
⎤

,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>2𝑇𝑇

⎣
⎢
⎢
⎢
⎡ � 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)⎦
⎥
⎥
⎥
⎤

⎭�
��
��
��
��
�⎬
��
��
��
��
��
⎫

. 

Now, for 𝑡𝑡 ≥ 𝑇𝑇 : 
��(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1� ≤ �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2 ≤ �(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2

≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2, 
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so: 

� 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
− �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1𝑦𝑦∞

≥ − � 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑘𝑘‖𝑑𝑑0‖2

𝑇𝑇

𝑘𝑘=1
− 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞

= −𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

‖𝑑𝑑0‖2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇 �(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞, 

thus 𝜍𝜍 ≥ 𝜍𝜍, where: 

𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
�⎨
��
��
��
��
��
⎧

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) 𝑦𝑦∞ ⎦
⎥⎥
⎥⎥
⎤

,

⎣
⎢⎢
⎢
⎡−𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
2𝑇𝑇+1�𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

‖𝑑𝑑0‖2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑇𝑇+1�(𝐼𝐼 − 𝐹𝐹)−1�2‖𝑑𝑑0‖2𝑦𝑦∞ + �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺) ⎦
⎥⎥
⎥
⎤

⎭�
��
��
��
��
�⎬
��
��
��
��
��
⎫

. 

It is worth noting that as 𝑇𝑇 → ∞, the final minimand in this expression tends to: 
�(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞ + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞, 

i.e. a positive multiple of the doubly infinite sum of 𝑑𝑑1,𝑘𝑘  over all 𝑘𝑘 ∈ ℤ . If this 
expression is negative, then our lower bound on 𝜍𝜍 will be negative as well, and hence 
uninformative. 

To construct an upper bound on 𝜍𝜍 , fix 𝑇𝑇 ∈ ℕ+ , and define a new matrix 𝑀𝑀(𝑇𝑇) ∈
ℝℕ+×ℕ+  by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇

(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇  , and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+ , with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇  , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) =

�𝑑𝑑𝑘𝑘−𝑡𝑡,1� + 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. Then: 

𝜍𝜍 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

1∞×1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1�
∞

𝑘𝑘=𝑇𝑇+1
+ � 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

∞

𝑘𝑘=𝑇𝑇+1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + � �𝑑𝑑𝑘𝑘,1�
∞

𝑘𝑘=𝑇𝑇+1−𝑡𝑡
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐺𝐺

𝑘𝑘
∞

𝑘𝑘=0
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 + 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
‖𝑑𝑑0‖2𝜙𝜙𝐻𝐻

𝑇𝑇+1−𝑡𝑡 � 𝜙𝜙𝐻𝐻
𝑘𝑘

∞

𝑘𝑘=0
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)� 

= 𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇 𝑦𝑦 +
𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

‖𝑑𝑑0‖2𝜙𝜙𝐻𝐻
𝑇𝑇+1−𝑡𝑡

1 − 𝜙𝜙𝐻𝐻
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

(1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺)(1 − 𝜙𝜙𝐺𝐺)�. 
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D. Other properties of the solution set 

First, let us give one further definition: 

Definition 9 ((Non-)Degenerate matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇   is called a non-
degenerate matrix if the principal minors of 𝑀𝑀  are all non-zero. 𝑀𝑀  is called a 
degenerate matrix if it is not a non-degenerate matrix. 

Then, conditions for having a finite or convex set of solutions are given in the following 
propositions. 

Proposition 17 The LCP (𝑞𝑞, 𝑀𝑀) has a finite (possibly zero) number of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is non-degenerate. (Cottle, Pang, and Stone 2009a) 

Proposition 18 The LCP (𝑞𝑞, 𝑀𝑀) has a convex (possibly empty) set of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇  if and only if 𝑀𝑀 is column sufficient. (Cottle, Pang, and Stone 2009a) 

E. Generalisations to richer otherwise linear models 

It is straightforward to generalise the results for Problem 2 to less restrictive otherwise 
linear models with occasionally binding constraints. 

Firstly, if the constraint is on a variable other than 𝑥𝑥1,𝑡𝑡, or in another equation than the 
first, then it is immediately clear that all of the results must go through as before (just 
by relabelling and rearranging). Furthermore, if the constraint takes the form of 𝑧𝑧1,𝑡𝑡 =
max�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡� , where 𝑧𝑧1,𝑡𝑡 , 𝑧𝑧2,𝑡𝑡  and 𝑧𝑧3,𝑡𝑡  are linear expressions in the contemporaneous 
values, lags and leads of 𝑥𝑥𝑡𝑡, then, assuming without loss of generality that 𝑧𝑧3,⋅ > 𝑧𝑧2,⋅ in 
steady-state, we have that 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡� . Hence, adding a new 
auxiliary variable 𝑥𝑥𝑛𝑛+1,𝑡𝑡, with the associated equation 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = 𝑧𝑧1,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡, and replacing 
the constrained equation with 𝑥𝑥𝑛𝑛+1,𝑡𝑡 = max�0, 𝑧𝑧3,𝑡𝑡 − 𝑧𝑧2,𝑡𝑡�, we have a new equation in the 
form covered by our original results. Moreover, if rather than a max we have a min, we 
just use the fact that if 𝑧𝑧1,𝑡𝑡 = min�𝑧𝑧2,𝑡𝑡, 𝑧𝑧3,𝑡𝑡�, then −𝑧𝑧1,𝑡𝑡 = max�−𝑧𝑧2,𝑡𝑡, −𝑧𝑧3,𝑡𝑡�, which is in 
the form covered by the generalisation just established. 

We may also readily deal with multiple occasionally binding constraints, following 
the representation used in Holden and Paetz (2012). Suppose there are 𝑐𝑐 constrained 
variables in the model. For 𝑎𝑎 ∈ {1, … , 𝑐𝑐} , let 𝑞𝑞(𝑎𝑎)  be the path of the 𝑎𝑎 th constrained 
variable in the absence of all constraints. For 𝑎𝑎, 𝑏𝑏 ∈ {1, … , 𝑐𝑐}, let 𝑀𝑀(𝑎𝑎,𝑏𝑏) be the matrix 
created by horizontally stacking the column vector relative impulse responses of the 𝑎𝑎th 
constrained variable to magnitude 1 news shocks at horizon 0, … , 𝑇𝑇 − 1 to the equation 
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defining the 𝑏𝑏 th constrained variables. For example, if 𝑐𝑐 = 1  so there is a single 
constraint, then we would have that 𝑀𝑀(1,1) = 𝑀𝑀 as defined in equation (2). Finally, let: 

𝑞𝑞 ≔
⎣
⎢⎡
𝑞𝑞(1)

⋮
𝑞𝑞(𝑐𝑐)⎦

⎥⎤ , 𝑀𝑀 ≔
⎣
⎢⎡
𝑀𝑀(1,1) ⋯ 𝑀𝑀(1,𝑐𝑐)

⋮ ⋱ ⋮
𝑀𝑀(𝑐𝑐,1) ⋯ 𝑀𝑀(𝑐𝑐,𝑐𝑐)⎦

⎥⎤, 

and let 𝑦𝑦  be a solution to the LCP (𝑞𝑞, 𝑀𝑀) . Then the vertically stacked paths of the 
constrained variables in a solution which satisfies these constraints is given by 𝑞𝑞 + 𝑀𝑀𝑦𝑦, 
and again any solution satisfying the constraints corresponds to a solution to the LCP. 
Thus, in the multiple constraint case, all of our previous results go through (almost) 
immediately, with this redefined 𝑞𝑞 vector and 𝑀𝑀 matrix. 

F. Proof of the sufficient conditions for the existence of a unique 
solution to the dynamic programming problem 

Results when �̃�𝑿 is possibly non-compact, but 𝚪𝚪�(𝒙𝒙) is compact valued and 𝒙𝒙 ∈ 𝚪𝚪�(𝒙𝒙) 
for all 𝒙𝒙 ∈ �̃�𝑿 We first note that for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋̃: 

ℱ�(𝑥𝑥, 𝑧𝑧) ≤ 𝑢𝑢(0) − 1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′, 

thus our objective function is bounded above without additional assumptions. For a 
lower bound, we assume that for all 𝑥𝑥 ∈ 𝑋𝑋̃, 𝑥𝑥 ∈ Γ�(𝑥𝑥), so holding the state fixed is always 
feasible. This is true in very many standard applications. Then, the value of setting 𝑥𝑥𝑡𝑡 =
𝑥𝑥0 for all 𝑡𝑡 ∈ ℕ+ provides a lower bound for our objective function. 

More precisely, we define 𝕍𝕍 ≔ �𝑣𝑣�𝑣𝑣: 𝑋𝑋̃ → [−∞, ∞)� and 𝑣𝑣, 𝑣𝑣 ∈ 𝕍𝕍 by: 

𝑣𝑣(𝑥𝑥) = 1
1 − 𝛽𝛽 ℱ�(𝑥𝑥0, 𝑥𝑥0), 

𝑣𝑣(𝑥𝑥) = 1
1 − 𝛽𝛽 �𝑢𝑢(0) − 1

2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′�, 

for all 𝑥𝑥 ∈ 𝑋𝑋̃. 
Finally, define ℬ: 𝕍𝕍 → 𝕍𝕍 by: 

ℬ(𝑣𝑣)(𝑥𝑥) = sup
𝑧𝑧∈Γ�(𝑥𝑥)

�ℱ�(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽𝑣𝑣(𝑧𝑧)� (17) 

for all 𝑣𝑣 ∈ 𝕍𝕍  and for all 𝑥𝑥 ∈ 𝑋𝑋̃ . Then ℬ(𝑣𝑣) ≥ 𝑣𝑣  and ℬ(𝑣𝑣) ≤ 𝑣𝑣 . Furthermore, if some 
sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞   satisfies the constraint that for all 𝑡𝑡 ∈ ℕ+ , 𝑥𝑥𝑡𝑡 ∈ Γ�(𝑥𝑥𝑡𝑡−1) , and the 
objective in (8) is finite for that sequence, then it must be the case that ‖𝑥𝑥𝑡𝑡‖∞𝑡𝑡𝛽𝛽

𝑡𝑡
2 → 0 as 

𝑡𝑡 → ∞ (by the comparison test), so:  
lim inf

𝑡𝑡→∞
𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Additionally, for any sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ : 

lim sup
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Thus, our dynamic programming problem satisfies the assumptions of Theorem 2.1 of 
Kamihigashi (2014), and so ℬ  has a unique fixed point in [𝑣𝑣, 𝑣𝑣]  to which ℬ𝑘𝑘(𝑣𝑣) 
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converges pointwise, monotonically, as 𝑘𝑘 → ∞ , and which is equal to the function 
𝑣𝑣∗: 𝑋𝑋̃ → ℝ defined by: 

𝑣𝑣∗(𝑥𝑥0) = sup�∑ 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞
𝑡𝑡=1 �∀𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1)� , (18) 

for all 𝑥𝑥0 ∈ 𝑋𝑋̃. 
Furthermore, if we define 𝕎𝕎 ≔ �𝑣𝑣 ∈ 𝑉𝑉 �𝑣𝑣 is continuous on 𝑋𝑋̃, 𝑣𝑣 is concave on 𝑋𝑋̃� , 

then as 𝑢𝑢(̃2) is negative-definite, 𝑣𝑣 ∈ 𝕎𝕎. Additionally, under the assumption that Γ�(𝑥𝑥) 
is compact valued, if 𝑣𝑣 ∈ 𝕎𝕎, then ℬ(𝑣𝑣) ∈ 𝕎𝕎, by the theorem of the maximum,38 and, 
furthermore, there is a unique policy function which attains the supremum in the 
definition of ℬ(𝑣𝑣). Moreover, 𝑣𝑣∗ = lim

𝑘𝑘→∞
ℬ𝑘𝑘(𝑣𝑣) is concave and lower semi-continuous 

on 𝑋𝑋̃ . 39  We just need to prove that 𝑣𝑣∗  is upper semi-continuous. 40  Suppose for a 
contradiction that it is not, so there exists 𝑥𝑥∗ ∈ 𝑋𝑋̃ such that: 

lim sup
𝑥𝑥→𝑥𝑥∗

𝑣𝑣∗(𝑥𝑥) > lim
𝑘𝑘→∞

𝑣𝑣∗(𝑥𝑥∗). 

Then, there exists 𝛿𝛿 > 0  such that for all 𝜖𝜖 > 0 , there exists 𝑥𝑥0
(𝜖𝜖) ∈ 𝑋𝑋̃  with �𝑥𝑥∗ −

𝑥𝑥0
(𝜖𝜖)�∞ < 𝜖𝜖 such that: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� > 𝛿𝛿 + 𝑣𝑣∗(𝑥𝑥∗). 

Now, by the definition of a supremum, for all 𝜖𝜖 > 0, there exists �𝑥𝑥𝑡𝑡
(𝜖𝜖)�𝑡𝑡=1

∞
 such that for 

all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) � and: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� < 𝛿𝛿 + � 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1

(𝜖𝜖) , 𝑥𝑥𝑡𝑡
(𝜖𝜖)�

∞

𝑡𝑡=1
. 

Hence: 

� 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1
(𝜖𝜖) , 𝑥𝑥𝑡𝑡

(𝜖𝜖)�
∞

𝑡𝑡=1
> 𝑣𝑣∗�𝑥𝑥0

(𝜖𝜖)� − 𝛿𝛿 > 𝑣𝑣∗(𝑥𝑥∗). 

Now, let 𝒮𝒮0 ≔ �𝑥𝑥 ∈ 𝑋𝑋̃�‖𝑥𝑥∗ − 𝑥𝑥‖∞ ≤ 1 � , and for 𝑡𝑡 ∈ ℕ+ , let 𝒮𝒮𝑡𝑡 ≔ Γ(𝒮𝒮𝑡𝑡−1) . Then, 
since we are assuming Γ  is compact valued, for all 𝑡𝑡 ∈ ℕ , 𝒮𝒮𝑡𝑡  is compact by the 
continuity of Γ. Furthermore, for all 𝑡𝑡 ∈ ℕ and 𝜖𝜖 ∈ (0,1), 𝑥𝑥𝑡𝑡

(𝜖𝜖) ∈ 𝒮𝒮𝑡𝑡 . Hence, ∏ 𝒮𝒮𝑡𝑡
∞
𝑡𝑡=0  

is sequentially compact in the product topology. Thus, there exists a sequence (𝜖𝜖𝑘𝑘)𝑘𝑘=1
∞  

with 𝜖𝜖𝑘𝑘 → 0 as 𝑘𝑘 → ∞ and such that 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) converges for all 𝑡𝑡 ∈ ℕ. Let 𝑥𝑥𝑡𝑡 ≔ lim

𝑘𝑘→∞
𝑥𝑥𝑡𝑡

(𝜖𝜖𝑘𝑘), 

and note that 𝑥𝑥∗ = 𝑥𝑥0 ∈ 𝒮𝒮0 ⊆ 𝑋𝑋̃, and that for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖𝑘𝑘)�, so by the 
continuity of Γ, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Thus, by Fatou’s Lemma: 

𝑣𝑣∗(𝑥𝑥∗) ≥ � 𝛽𝛽𝑡𝑡−1ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞

𝑡𝑡=1
≥ lim sup

𝑘𝑘→∞
� 𝛽𝛽𝑡𝑡−1ℱ��𝑥𝑥𝑡𝑡−1

(𝜖𝜖,𝑘𝑘), 𝑥𝑥𝑡𝑡
(𝜖𝜖,𝑘𝑘)�

∞

𝑡𝑡=1
> 𝑣𝑣∗(𝑥𝑥∗), 

which gives the required contradiction. Thus 𝑣𝑣∗ is continuous and concave, and there is 
a unique policy function which attains the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

                                                 
38 See e.g. Theorem 3.6 and following of Stokey, Lucas, and Prescott (1989). 
39 See e.g. Lemma 2.41 of Aliprantis and Border (2013). 
40 In the following, we broadly follow the proof of Lemma 3.3 of Kamihigashi and Roy (2003). 
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Results when �̃�𝑿 is compact If 𝑋𝑋̃ is compact, then Γ is compact valued. Furthermore, 
𝑋𝑋̃ is clearly convex, and Γ is continuous. Thus assumption 4.3 of Stokey, Lucas, and 
Prescott (1989) (henceforth: SLP) is satisfied. Since the continuous image of a compact 
set is compact, ℱ� is bounded above and below, so assumption 4.4 of SLP is satisfied as 
well. Furthermore, ℱ� is concave and Γ is convex, so assumptions 4.7 and 4.8 of SLP 
are satisfied too. Thus, by theorem 4.6 of SLP, with ℬ defined as in equation (17) and 
𝑣𝑣∗  defined as in equation (18) , ℬ  has a unique fixed point which is continuous and 
equal to 𝑣𝑣∗. Moreover, by theorem 4.8 of SLP, there is a unique policy function which 
attains the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

G. Proof of the sufficiency of the KKT and limit conditions 

Suppose that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ , (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞  satisfy the KKT conditions given in equations (10) and 
(11) , and that 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆�����  as 𝑡𝑡 → ∞ . Let (𝑧𝑧𝑡𝑡)𝑡𝑡=0

∞   satisfy 𝑧𝑧0 = 𝑥𝑥0  and 𝑧𝑧𝑡𝑡 ∈
Γ�(𝑧𝑧𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Then, by the KKT conditions and the concavity of: 

(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) ↦ ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��, 

we have that for all 𝑇𝑇 ∈ ℕ+:41 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1
 

= � 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1
 

≥ � 𝛽𝛽𝑡𝑡−1 �ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

− 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑧𝑧𝑡𝑡−1 − 𝜇𝜇
𝑧𝑧𝑡𝑡 − 𝜇𝜇 ��� 

≥ � 𝛽𝛽𝑡𝑡−1 ��𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+ �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,1

(1)� (𝑥𝑥𝑡𝑡−1 − 𝑧𝑧𝑡𝑡−1)� 

= � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡�𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)
𝑇𝑇

𝑡𝑡=1

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)�� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
⎦
⎥⎤

+ 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 ) 

= 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 ). 

                                                 
41 Here, we broadly follow the proof of Theorem 4.15 of Stokey, Lucas, and Prescott (1989). 
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Thus: 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1

≥ lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇 )

= lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�(𝑧𝑧𝑇𝑇 − 𝜇𝜇) = lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + 𝜆𝜆�����′Ψ⋅,1

(1)�𝑧𝑧𝑇𝑇 . 
Now, suppose lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇 𝑧𝑧𝑇𝑇 ≠ 0, then since 𝑢𝑢(̃2) is negative definite: 

� 𝛽𝛽𝑡𝑡−1ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)
∞

𝑡𝑡=1
= −∞, 

so (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  cannot be optimal. Hence, regardless of the value of lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇 𝑧𝑧𝑇𝑇 : 

� 𝛽𝛽𝑡𝑡−1�ℱ�(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ�(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1
≥ 0, 

which implies that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 5. 

H. Results from and for general dynamic programming problems 

Here we consider non-linear dynamic programming problems with general objective 
functions. Consider then the following generalisation of Problem 5: 

Problem 8 Suppose Γ: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛)  is a given compact, convex valued continuous 
function. Define 𝑋𝑋 ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ(𝑥𝑥) ≠ ∅�, and suppose without loss of generality that 
for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ(𝑥𝑥) ∩ 𝑋𝑋 = Γ(𝑥𝑥). Further suppose that ℱ: 𝑋𝑋 × 𝑋𝑋 → ℝ is a given twice 
continuously differentiable, concave function, and that 𝑥𝑥0 ∈ 𝑋𝑋 and 𝛽𝛽 ∈ (0,1) are given. 
Choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
, 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1). 

For tractability, we make the following additional assumption, which enables us to 
uniformly approximate Γ by a finite number of inequalities: 

Assumption 5 𝑋𝑋 is compact. 

Then, by theorem 4.8 of Stokey, Lucas, and Prescott (1989), there is a unique solution 
to Problem 8 for any 𝑥𝑥0. We further assume the following to ensure that there is a natural 
point to approximate around:42 

Assumption 6 There exists 𝜇𝜇 ∈ 𝑋𝑋  such that for any given 𝑥𝑥0 ∈ 𝑋𝑋 , in the solution to 
Problem 8 with that 𝑥𝑥0, as 𝑡𝑡 → ∞, 𝑥𝑥𝑡𝑡 → 𝜇𝜇. 

                                                 
42 If 𝑋𝑋 is convex, then the existence of a fixed point of the policy function is a consequence of the Brouwer fixed point theorem, 
but there is no reason the fixed point guaranteed by Brouwer’s theorem should be even locally attractive. 
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Having defined 𝜇𝜇, we can let ℱ� be a second order Taylor approximation to ℱ around 
𝜇𝜇, which will take the form of equation (7). Assumption 3 will be satisfied for this 
approximation thanks to the concavity of ℱ. To apply the previous results, we also then 
need to approximate the constraints. 

Suppose first that the graph of Γ  is convex, i.e. the set {(𝑥𝑥, z)|𝑥𝑥 ∈ 𝑋𝑋, 𝑧𝑧 ∈ Γ(𝑥𝑥)}  is 
convex. Since it is also compact, by Assumption 5, for any 𝜖𝜖 > 0, there exists 𝑐𝑐 ∈ ℕ, 
Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  such that with Γ�  defined as in equation (5)  and 𝑋𝑋̃ 
defined as in equation (6): 

1) 𝜇𝜇 ∈ 𝑋𝑋̃ ⊆ 𝑋𝑋, 
2) for all 𝑥𝑥 ∈ 𝑋𝑋 , there exists 𝑥𝑥 ̃ ∈ 𝑋𝑋̃ such that ‖𝑥𝑥 − 𝑥𝑥‖̃2 < 𝜖𝜖, 
3) for all 𝑥𝑥 ∈ 𝑋𝑋̃, Γ�(𝑥𝑥) ⊆ Γ(𝑥𝑥), 
4) for all 𝑥𝑥 ∈ 𝑋𝑋̃, and for all 𝑧𝑧 ∈ Γ(𝑥𝑥), there exists 𝑧𝑧 ̃ ∈ Γ�(𝑥𝑥) such that ‖𝑧𝑧 − 𝑧𝑧‖̃2 < 𝜖𝜖. 

(This follows from standard properties of convex sets.) Then, by our previous results, 
the following proposition is immediate: 

Proposition 19 Suppose we are given a problem in the form of Problem 8 (and which 
satisfies Assumption 5 and Assumption 6). If the graph of Γ is convex, then we can 
construct a problem in the form of the multiple-bound generalisation of Problem 2 
which encodes a local approximation to the original dynamic programming problem 
around 𝑥𝑥𝑡𝑡 = 𝜇𝜇. Furthermore, the LCP corresponding to this approximation will have a 
unique solution for all 𝑥𝑥0 ∈ 𝑋𝑋̃. Moreover, the approximation is consistent for quadratic 
objectives in the sense that as the number of inequalities used to approximate Γ goes to 
infinity, the approximate value function converges uniformly to the true value function. 

Unfortunately, if the graph of Γ is non-convex, then we will not be able to derive 
similar results. To see the best we could do along similar proof lines, here we merely 
sketch the construction of an approximation to the graph of Γ in this case.  We will need 
to assume that there exists 𝑧𝑧 ∈ int Γ(𝑥𝑥) for all 𝑥𝑥 ∈ 𝑋𝑋, which precludes the existence of 
equality constraints. 43  We first approximate the graph of Γ  by a polytope (i.e. 𝑛𝑛 
dimensional polygon) contained in the graph of Γ such that all points in the graph of Γ 
are within 𝜖𝜖2 of a point in the polytope. Then, providing 𝜖𝜖 is sufficiently small, for each 
simplicial surface element of the polytope, indexed by 𝑘𝑘 ∈ {1, … , 𝑐𝑐} , we can find a 
quadratic function 𝑞𝑞𝑘𝑘: 𝑋𝑋 × 𝑋𝑋 → ℝ with: 

𝑞𝑞𝑘𝑘 = Ψ𝑘𝑘
(0) + Ψ𝑘𝑘,⋅

(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
Ψ𝑘𝑘

(2) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� 

                                                 
43 This is often not too much of a restriction, since equality constraints may be substituted out. 
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for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋  and such that 𝑞𝑞𝑘𝑘 is zero at the corners of the simplicial surface element, 
such that 𝑞𝑞𝑘𝑘  is weakly negative on its surface, such that Ψ𝑘𝑘

(2)  is symmetric positive 
definite, and such that all points in the polytope are within 𝜖𝜖2 of a point in the set: 

{(𝑥𝑥, 𝑧𝑧) ∈ 𝑋𝑋 × 𝑋𝑋 |∀𝑘𝑘 ∈ {1, … , 𝑆𝑆}, 0 ≤ 𝑞𝑞𝑘𝑘(𝑥𝑥, 𝑧𝑧)}. 
This gives a set of quadratic constraints that approximate Γ. If we then define: 

𝑢𝑢(̃2) ≔ 𝑢𝑢(2) + � 𝜆𝜆�����Ψ,𝑘𝑘
′ Ψ𝑘𝑘

(2)
𝑐𝑐

𝑘𝑘=1
, 

where 𝑢𝑢(2) is the Hessian of ℱ, then the Lagrangian in equation (9) is the same as what 
would be obtained from taking a second order Taylor approximation to the Lagrangian 
of the problem of maximising our non-linear objective subject to the approximate 
quadratic constraints, suggesting it may perform acceptably well for 𝑥𝑥  near 𝜇𝜇 , along 
similar lines to the results of Levine, Pearlman, and Pierse (2008) and Benigno and 
Woodford (2012). However, existence of a unique solution to the original problem 
cannot be used to establish even the existence of a solution of the approximated 
problem, since only linear approximations to the quadratic constraints would be 
imposed by our algorithm, giving a greatly reduced choice set (as the quadratic terms 
are positive definite). 

I. Proof of the properties of the BPY model 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝜋𝜋,𝑡𝑡]′, the BPY model is in the form of Problem 2, with: 

𝐴𝐴 ≔
⎣
⎢⎡
0 −𝛼𝛼∆𝑦𝑦 0
0 0 0
0 0 0⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 −1 0

0 𝛾𝛾 −1⎦
⎥
⎥
⎤

, 𝐶𝐶 ≔
⎣
⎢⎢
⎡
0 0 0
0 1 1

𝜎𝜎
0 0 𝛽𝛽⎦

⎥⎥
⎤
. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det
⎣
⎢⎢
⎡

−1 0 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 0 1

𝜎𝜎
0 𝛾𝛾 −1⎦

⎥⎥
⎤

≠ 0 

as 𝛼𝛼𝜋𝜋 ≠ 1 and 𝛾𝛾 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹2,2, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢⎢
⎢
⎢
⎡0 𝛼𝛼∆𝑦𝑦(𝑓𝑓 − 1) + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 0

0 𝑓𝑓 0

0 𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 0⎦

⎥⎥
⎥
⎥
⎤
. 

Hence: 

𝑓𝑓 = 𝑓𝑓 2 − 1
𝜎𝜎 �𝛼𝛼∆𝑦𝑦(𝑓𝑓 − 1) + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 − 𝛾𝛾𝑓𝑓 2

1 − 𝛽𝛽𝑓𝑓 �, 

i.e.: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. (19) 
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When 𝑓𝑓 ≤ 0, the left hand side is negative, and when 𝑓𝑓 = 1, the left hand side equals 
(𝛼𝛼𝜋𝜋 − 1)𝛾𝛾 > 0  (by assumption on 𝛼𝛼𝜋𝜋 ), hence equation (3)  has either one or three 
solutions in (0,1) , and no solutions in (−∞, 0] . We wish to prove there is a unique 
solution in (−1,1). First note that when 𝛼𝛼𝜋𝜋 = 1, the discriminant of the polynomial is: 

�(1 − 𝛽𝛽)�𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� − 𝛾𝛾�
2

��𝛽𝛽𝛼𝛼∆𝑦𝑦�2 + 2𝛽𝛽(𝛾𝛾 − 𝜎𝜎)𝛼𝛼∆𝑦𝑦 + (𝛾𝛾 + 𝜎𝜎)2�. 
The first multiplicand is positive. The second is minimised when 𝜎𝜎 = 𝛽𝛽𝛼𝛼∆𝑦𝑦 − 𝛾𝛾, at the 
value 4𝛽𝛽𝛾𝛾𝛼𝛼∆𝑦𝑦 > 0, hence this multiplicand is positive too. Consequently, at least for 
small 𝛼𝛼𝜋𝜋, there are three real solutions for 𝑓𝑓 , so there may be multiple solutions in (0,1). 

Suppose for a contradiction that there were at least three solutions to equation (3) in 
(0,1)  (double counting repeated roots), even for arbitrary large 𝛽𝛽 ∈ (0,1) . Let 
𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 ∈ (0,1) be the three roots. Then, by Vieta’s formulas: 

3 > 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 =
�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

3 > 𝑓𝑓1𝑓𝑓2 + 𝑓𝑓1𝑓𝑓3 + 𝑓𝑓2𝑓𝑓3 =
(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

1 > 𝑓𝑓1𝑓𝑓2𝑓𝑓3 =
𝛼𝛼∆𝑦𝑦
𝛽𝛽𝜎𝜎 , 

so: 
(2𝛽𝛽 − 1)𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 > 𝛾𝛾 > 0 

𝛽𝛽 > 1
2 , (2𝛽𝛽 − 1)𝜎𝜎 > 𝛾𝛾, 

𝛽𝛽𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 + 𝜎𝜎(1 − 𝛽𝛽), 
2𝛽𝛽𝜎𝜎 > (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎(1 − 𝛽𝛽), 

𝛽𝛽𝜎𝜎 > 𝛼𝛼∆𝑦𝑦. 
Also, the first derivative of equation (3) must be strictly positive at 𝑓𝑓 = 1, so: 

(1 − 𝛽𝛽)�𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� + (𝛼𝛼𝜋𝜋 − 2)𝛾𝛾 > 0. 
Combining all of these inequalities gives the bounds: 

0 < 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾 + 𝜎𝜎
𝛽𝛽 , 

2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 <
(3𝛽𝛽 − 1)𝜎𝜎 − (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦

𝛾𝛾 . 

Furthermore, if there are multiple solutions to equation (3), then the discriminant of its 
first derivative must be weakly positive, i.e.: 

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝜎𝜎 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� ≥ 0. 

Therefore, we have the following bounds on 𝛼𝛼𝜋𝜋: 

2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 ≤
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾  
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since, 

(3𝛽𝛽 − 1)𝜎𝜎 − (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦
𝛾𝛾 −

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝜎𝜎 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�
3𝛽𝛽𝜎𝜎𝛾𝛾

=
��2𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�𝛽𝛽 − 𝛾𝛾 − 𝜎𝜎� ��4𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

3𝛽𝛽𝛾𝛾𝜎𝜎 > 0 

as 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾+𝜎𝜎
𝛽𝛽 . Consequently, there exists 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1] such that: 

𝛼𝛼𝜋𝜋 = (1 − 𝜆𝜆) �2 +
(1 − 𝛽𝛽)�𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 �

+ 𝜆𝜆
⎣
⎢⎢
⎡��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎 �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾
⎦
⎥⎥
⎤, 

𝛼𝛼∆𝑦𝑦 = (1 − 𝜇𝜇)[0] + 𝜇𝜇 �2𝜎𝜎 − 𝛾𝛾 + 𝜎𝜎
𝛽𝛽 �, 

𝛾𝛾 = (1 − 𝜅𝜅)[0] + 𝜅𝜅[(2𝛽𝛽 − 1)𝜎𝜎] 
These simultaneous equations have unique solutions for 𝛼𝛼𝜋𝜋, 𝛼𝛼∆𝑦𝑦 and 𝛾𝛾 in terms of 𝜆𝜆, 
𝜇𝜇  and 𝜅𝜅 . Substituting these solutions into the discriminant of equation (3)  gives a 
polynomial in 𝜆𝜆, 𝜇𝜇, 𝜅𝜅, 𝛽𝛽, 𝜎𝜎. As such, an exact global maximum of the discriminant may 
be found subject to the constraints 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1], 𝛽𝛽 ∈ �1

2 , 1�, 𝜎𝜎 ∈ [0, ∞), by using an 
exact compact polynomial optimisation solver, such as that in the Maple computer 
algebra package. Doing this gives a maximum of 0 when 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 = 1 and 𝜎𝜎 = 0. 
But of course, we actually require that 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 < 1, 𝜎𝜎 > 0. Thus, by continuity, 
the discriminant is strictly negative over the entire possible domain. This gives the 
required contradiction to our assumption of three roots to the polynomial, establishing 
that Assumption 1 holds for this model. 

Now, when 𝑇𝑇 = 1, 𝑀𝑀 is equal to the top left element of the matrix −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, i.e.: 

𝑀𝑀 =
𝛽𝛽𝜎𝜎𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎

𝛽𝛽𝜎𝜎𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦� 𝑓𝑓 + 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋
. 

Now, multiplying the denominator by 𝑓𝑓  gives: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦� 𝑓𝑓 2 + �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓

= �𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓
− 𝛼𝛼∆𝑦𝑦� − �𝛽𝛽𝛼𝛼∆𝑦𝑦𝑓𝑓 − 𝛼𝛼∆𝑦𝑦� = (1 − 𝛽𝛽𝑓𝑓 )𝛼𝛼∆𝑦𝑦 > 0, 

by equation (19). Hence, the sign of 𝑀𝑀 is that of 𝛽𝛽𝜎𝜎𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎. I.e., 𝑀𝑀 
is negative if and only if: 

�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� − ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 < 𝑓𝑓

<
�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� + ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 
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The upper limit is greater than 1, so only the lower is relevant. To translate this bound 
on 𝑓𝑓  into a bound on 𝛼𝛼∆𝑦𝑦, we first need to establish that 𝑓𝑓  is monotonic in 𝛼𝛼∆𝑦𝑦. 

Totally differentiating equation (19) gives: 

�3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�� 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

= (1 − 𝛽𝛽𝑓𝑓 )(1 − 𝑓𝑓 ) > 0. 
Thus, the sign of 𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
 is equal to that of: 

3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�. 

Note, however, that this expression is just the derivative of the left hand side of equation 
(19) with respect to 𝑓𝑓 . 

To establish the sign of 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

, we consider two cases. First, suppose that equation (19) 

has three real solutions. Then, the unique solution to equation (19) in (0,1) is its lowest 
solution. Hence, this solution must be below the first local maximum of the left hand 
side of equation (19) . Consequently, at the 𝑓𝑓 ∈ (0,1) , which solves equation (19) ,  
3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Alternatively, 

suppose that equation (19) has a unique real solution. Then the left hand side of this 
equation cannot change sign in between its local maximum and its local minimum (if it 
has any). Thus, at the 𝑓𝑓 ∈ (0,1) at which it changes sign, we must have that 3𝛽𝛽𝜎𝜎𝑓𝑓 2 −
2 ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0. Therefore, in either case 

𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

> 0, meaning that 𝑓𝑓  is monotonic increasing in 𝛼𝛼∆𝑦𝑦. 

Consequently, to find the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign, it is sufficient to 
find the lowest solution with respect to both 𝑓𝑓  and 𝛼𝛼∆𝑦𝑦 of the pair of equations: 

𝛽𝛽𝜎𝜎𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0, 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. 

The former implies that: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 2 + 𝜎𝜎𝑓𝑓 = 0, 

so, by the latter: 
𝛼𝛼∆𝑦𝑦𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋� 𝑓𝑓 + 𝛼𝛼∆𝑦𝑦 = 0. 

If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, then this equation holds if and only if: 
𝜎𝜎𝛽𝛽𝑓𝑓 2 − �(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0. 

Therefore, the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign are given by: 
𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

𝑓𝑓 =
�(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾� − ��(1 + 𝛽𝛽)𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

Thus, 𝑀𝑀 is negative if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋, and 𝑀𝑀 is zero if and only if 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋. 
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J. Proof of the properties of the BPY model with level targeting 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝑝𝑝,𝑡𝑡]′, the model of section 3.3 is in the form of Problem 
2, with: 

𝐴𝐴 ≔
⎣
⎢⎡
0 0 0
0 0 0
0 0 1⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 −1 − 1

𝜎𝜎
0 𝛾𝛾 −1 − 𝛽𝛽⎦

⎥
⎥
⎤

, 𝐶𝐶 ≔
⎣
⎢⎢
⎡
0 0 0
0 1 1

𝜎𝜎
0 0 𝛽𝛽⎦

⎥⎥
⎤
. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

− 1
𝜎𝜎 0 0

0 𝛾𝛾 −1⎦
⎥
⎥
⎤

≠ 0 

as 𝛼𝛼∆𝑦𝑦 ≠ 0 and 𝛼𝛼𝜋𝜋 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹3,3, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢⎢
⎢⎢
⎢
⎡0 0

𝑓𝑓 (1 − 𝑓𝑓 )�𝜎𝜎𝛼𝛼𝜋𝜋 − 𝛼𝛼∆𝑦𝑦�
𝛼𝛼∆𝑦𝑦 + (1 − 𝑓𝑓 )𝜎𝜎

0 0 𝑓𝑓 (1 − 𝑓𝑓 − 𝛼𝛼𝜋𝜋)
𝛼𝛼∆𝑦𝑦 + (1 − 𝑓𝑓 )𝜎𝜎

0 0 𝑓𝑓 ⎦
⎥⎥
⎥⎥
⎥
⎤

, 

and so: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − �(1 + 2𝛽𝛽)𝜎𝜎 + 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾� 𝑓𝑓 2 + �(2 + 𝛽𝛽)𝜎𝜎 + (1 + 𝛽𝛽)𝛼𝛼∆𝑦𝑦 + (1 + 𝛼𝛼𝜋𝜋)𝛾𝛾� 𝑓𝑓

− �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦� = 0. 
Now define: 

�̂�𝛼∆𝑦𝑦 ≔ 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦, �̂�𝛼𝜋𝜋 ≔ 1 + 𝛼𝛼𝜋𝜋 
so: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ���̂�𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎� 𝑓𝑓 2 + �(1 + 𝛽𝛽)�̂�𝛼∆𝑦𝑦 + 𝛾𝛾�̂�𝛼𝜋𝜋 + 𝜎𝜎� 𝑓𝑓 − �̂�𝛼∆𝑦𝑦 = 0. 

This is identical to the equation for 𝑓𝑓  in the previous section, apart from the fact that 
�̂�𝛼∆𝑦𝑦 has replaced 𝛼𝛼∆𝑦𝑦 and �̂�𝛼𝜋𝜋 has replaced 𝛼𝛼𝜋𝜋. Hence, by the results of the previous 
section, Assumption 1 holds for this model as well. 

For this model, with 𝑇𝑇 = 1: 

𝑀𝑀 =
(1 − 𝑓𝑓 )(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝜎𝜎2 + �(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝛼𝛼∆𝑦𝑦 + �(1 − 𝑓𝑓 ) + 𝛼𝛼𝜋𝜋𝑓𝑓 �𝛾𝛾� 𝜎𝜎 + (1 − 𝑓𝑓 )𝛾𝛾𝛼𝛼∆𝑦𝑦

�(1 − 𝑓𝑓 )(1 + (1 − 𝑓𝑓 )𝛽𝛽)𝜎𝜎 + (1 + (1 − 𝑓𝑓 )𝛽𝛽)𝛼𝛼∆𝑦𝑦 + �(1 − 𝑓𝑓 ) + 𝛼𝛼𝜋𝜋�𝛾𝛾� �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�
> 0. 

K. Proof that the existence of a polynomial time approximate solution 
would imply P=NP 

Suppose that we have some solution procedure which accepts problems in the form 
of Problem 2 (and possibly other problems) together with a radius 𝜅𝜅 and an accuracy 
level 𝜖𝜖, and, in time polynomial in 𝑛𝑛, returns a set 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛 membership of which 



Online Appendices: Page 19 of 29 

may be evaluated in time polynomial in 𝑛𝑛, and a policy function 𝑝𝑝𝜅𝜅,𝜖𝜖: 𝒟𝒟𝜅𝜅,𝜖𝜖 ⊆ ℝ𝑛𝑛 →
ℝ𝑛𝑛 that may be evaluated in time polynomial in 𝑛𝑛 and that satisfies: 

�𝑝𝑝∗(𝑥𝑥) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥)�∞ < 𝜖𝜖, 
for all 𝑥𝑥 ∈ 𝒟𝒟∗ ⊆ 𝒟𝒟𝜖𝜖  with ‖𝑥𝑥 − 𝜇𝜇‖∞ < 𝜅𝜅 , and where 𝑝𝑝∗: 𝒟𝒟∗ → 𝒟𝒟∗  is an exact policy 
function, i.e. a function satisfying: 

1. For all 𝑥𝑥 ∈ 𝒟𝒟∗: 
𝑥𝑥1 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅(𝑥𝑥 − 𝜇𝜇) + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅�(𝑝𝑝∗(𝑥𝑥) − 𝜇𝜇) + 𝐶𝐶1,⋅�𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)� − 𝜇𝜇��, 

�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥 + 𝐵𝐵−1,⋅𝑝𝑝∗(𝑥𝑥) + 𝐶𝐶−1,⋅𝑝𝑝∗�𝑝𝑝∗(𝑥𝑥)�. 
2. For all 𝑥𝑥0 ∈ 𝒟𝒟∗, if 𝑥𝑥𝑡𝑡 = 𝑝𝑝∗(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+, then 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 
3. For all 𝑥𝑥0 ∉ 𝒟𝒟∗, there is no 𝑥𝑥1, 𝑥𝑥2, … ∈ ℝ𝑛𝑛 which solve this instance of Problem 

2. 
Now consider the following “knapsack”-type problem from Chung (1989): 

Problem 9 Suppose 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2, 𝑏𝑏 ∈ ℕ+ are given. Find 𝑧𝑧1, … , 𝑧𝑧𝑇𝑇−2 ∈ {0,1} such that 
∑ 𝑎𝑎𝑗𝑗𝑧𝑧𝑗𝑗

𝑇𝑇−2
𝑗𝑗=1 = 𝑏𝑏. 

Chung (1989) shows that there exists 𝓆𝓆 ∈ ℤ𝑇𝑇 , ℳ ∈ ℤ𝑇𝑇×𝑇𝑇 , such that Problem 9 has a 
solution if and only if the LCP �𝓆𝓆, ℳ�  has a solution, where 𝓆𝓆  and ℳ  may be 
computed from 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2 and 𝑏𝑏 in time polynomial in 𝑇𝑇 . Furthermore, the details of 
the proof in Chung (1989) reveal that for any 𝑦𝑦 ∈ ℝ𝑇𝑇   that solves the LCP �𝓆𝓆, ℳ� , 
𝑦𝑦𝑇𝑇−1 = 𝑦𝑦𝑇𝑇 = 0 , and setting 𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡

𝑎𝑎𝑡𝑡
  for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}  solves Problem 9. Since 

𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2 ∈ ℕ+  and 𝑧𝑧1, … , 𝑧𝑧𝑇𝑇−2 ∈ {0,1} , this implies that 𝑦𝑦𝑡𝑡 ∈ {0, 𝑎𝑎𝑡𝑡} ⊆ ℕ  for 𝑡𝑡 ∈
{1, … , 𝑇𝑇 − 2} . Moreover, by Proposition 2, given 𝑎𝑎1, … , 𝑎𝑎𝑇𝑇−2  and 𝑏𝑏  we can thus 
construct a model in the form of Problem 2 in polynomial time in 𝑇𝑇  , featuring 
polynomial in 𝑇𝑇  state variables, and such that for an appropriately chosen initial state, 
setting 𝑧𝑧𝑡𝑡 = 𝑥𝑥1,𝑡𝑡

𝑎𝑎𝑡𝑡
 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2} solves Problem 9 if it has a solution (where 𝑥𝑥1,𝑡𝑡 

gives the path of the bounded variable in the constructed model). Additionally, by 
inspecting the proof of Proposition 2 from section A, we see that since 𝓆𝓆 ∈ ℤ𝑇𝑇 , ℳ ∈
ℤ𝑇𝑇×𝑇𝑇 , and 𝑦𝑦𝑡𝑡 ∈ ℕ for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}, it must be the case that for all 𝑡𝑡 ∈ ℕ, 𝑥𝑥𝑡𝑡 ∈
ℤ𝑛𝑛 (for some 𝑛𝑛 ∈ ℕ), so the model is always integer valued. 

To complete the proof, we set 𝜖𝜖 ≔ 1
2 , 𝜅𝜅 ≔ ‖𝑥𝑥0 − 𝜇𝜇‖∞ + 1  and construct the policy 

function 𝑝𝑝𝜅𝜅,𝜖𝜖  for the constructed model. By assumption, we can do this in time 
polynomial in 𝑇𝑇 . Using this we can construct an exact solution for 𝑧𝑧𝑡𝑡 as follows. Set 
𝑥𝑥0̂ ≔ 𝑥𝑥0. Now suppose we have defined 𝑥𝑥�̂�𝑡−1 for some 𝑡𝑡 ∈ ℕ+. We first test if 𝑥𝑥�̂�𝑡−1 ∈
𝒟𝒟𝜅𝜅,𝜖𝜖 . If it is not, then we terminate the procedure with a “no solution” message. 
Otherwise, we set each element of 𝑥𝑥�̂�𝑡  to be equal to the nearest integer to the 
corresponding element of 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1). We then test if ‖𝑥𝑥�̂�𝑡 − 𝜇𝜇‖ < 𝜅𝜅. If it is, we proceed, 
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otherwise, we redefine 𝜅𝜅 ≔ ‖𝑥𝑥�̂�𝑡 − 𝜇𝜇‖∞ + 1 , and restart. After an amount of time 
bounded by a polynomial in 𝑇𝑇 , we will have either terminated with a “no solution” 
message, or have successfully defined 𝑥𝑥�̂�𝑡  for 𝑡𝑡 ∈ {0, … , 𝑇𝑇 − 2} , where for all 𝑡𝑡 ∈
{0, … , 𝑇𝑇 − 2}, we will have found some 𝜅𝜅 for which ‖𝑥𝑥�̂�𝑡 − 𝜇𝜇‖ < 𝜅𝜅. In this case, we then 
define 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
  for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}  and test whether it solves Problem 9. If it does, 

report a “solution found” message, otherwise, report a “no solution” message. We now 
prove that this procedure works. 

We first prove that if 𝑥𝑥0 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛  then 𝑥𝑥�̂�𝑡 = 𝑥𝑥𝑡𝑡 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛  for all 𝑡𝑡 ∈ ℕ , by 
induction on 𝑡𝑡. The inductive base case is trivial. Suppose for the inductive step that for 
some 𝑡𝑡 ∈ ℕ+, 𝑥𝑥�̂�𝑡−1 = 𝑥𝑥𝑡𝑡−1 ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛. Then 𝑥𝑥�̂�𝑡−1 ∈ 𝒟𝒟𝜅𝜅,𝜖𝜖, so 𝑥𝑥�̂�𝑡 is defined and is equal 
to the (elementwise) nearest integer to 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1) . Then since as 𝑥𝑥�̂�𝑡−1 ∈ 𝒟𝒟∗  and 
‖𝑥𝑥�̂�𝑡−1 − 𝜇𝜇‖ < 𝜅𝜅, �𝑝𝑝∗(𝑥𝑥�̂�𝑡−1) − 𝑝𝑝𝜅𝜅,𝜖𝜖(𝑥𝑥�̂�𝑡−1)�∞ < 1

2, and 𝑝𝑝∗: 𝒟𝒟∗ ∩ ℤ𝑛𝑛 → 𝒟𝒟∗ ∩ ℤ𝑛𝑛, it must be 
the case that 𝑥𝑥�̂�𝑡 = 𝑝𝑝∗(𝑥𝑥�̂�𝑡−1) ∈ 𝒟𝒟∗ ∩ ℤ𝑛𝑛. This establishes the inductive hypothesis, and 
hence if we set 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2} then test whether it solves Problem 9, we 

will find that it does, giving a solution, after only polynomial in 𝑇𝑇  calculations. 
Now suppose that 𝑥𝑥0 ∈ ℤ𝑛𝑛, but 𝑥𝑥0 ∉ 𝒟𝒟∗. There are two possibilities. Either we will 

find some 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 1}  for which 𝑥𝑥�̂�𝑡 ∉ 𝒟𝒟𝜖𝜖 , and hence 𝑥𝑥�̂�𝑡 ∉ 𝒟𝒟∗ , or we will 
successfully calculate 𝑥𝑥1̂,𝑡𝑡 for 𝑡𝑡 ∈ {1, … , 𝑇𝑇 − 2}. By the previous result, in the former 
case we will have found in polynomial time in 𝑇𝑇  a proof that 𝑥𝑥0 ∉ 𝒟𝒟∗, and hence that 
there is no solution to Problem 9. In the latter case, we can again set 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 for 𝑡𝑡 ∈

{1, … , 𝑇𝑇 − 2} and test whether it solves Problem 9, and we will find (in polynomial in 
𝑇𝑇  calculations) that it does not, giving an alternative polynomial time in 𝑇𝑇  proof that 
𝑥𝑥0 ∉ 𝒟𝒟∗, and hence that there is no solution to Problem 9. 

We have thus established that the procedure described (calculating 𝑥𝑥1̂, … , 𝑥𝑥�̂�𝑇−2 and 
then testing whether 𝑧𝑧�̂�𝑡 = 𝑥𝑥1̂,𝑡𝑡

𝑎𝑎𝑡𝑡
 solves Problem 9), enables us to answer the question of 

whether Problem 9 has a solution in an amount of time that is polynomial in 𝑇𝑇 . But 
Problem 9 is NP-complete (Karp 1972), and hence this implies that P=NP. 

L. Special cases with polynomial time solutions 

Polynomial time algorithms exist for the LCP if 𝑀𝑀 is general positive semi-definite 
(Kojima, Mizuno, and Yoshise 1989). However, it appears that 𝑀𝑀 is general positive 
semi-definite in only very few macroeconomic models, so this is of minimal relevance. 
Furthermore, If either condition 1 or condition 2 of Proposition 5 is known to be 
satisfied (e.g. 𝑀𝑀  is row sufficient), then we can find out if a solution exists in 
polynomial time, by solving the feasibility problem. Moreover, a polynomial time 
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algorithm exists (Illés, Nagy, and Terlaky 2010) which will give a certificate that one of 
the following is true, for a given 𝑞𝑞 and real number 𝜅𝜅����� ≥ 0: 
• For any 𝜅𝜅 ≤ 𝜅𝜅�����, 𝑀𝑀 is not a member of the matrix class 𝑃𝑃∗(𝜅𝜅), defined in the paper. 

(Note that for 𝜅𝜅1 < 𝜅𝜅2, 𝑃𝑃∗(𝜅𝜅1) ⊆ 𝑃𝑃∗(𝜅𝜅2), and that the class of sufficient matrices 
is the union of the classes of 𝑃𝑃∗(𝜅𝜅) matrices for all 𝜅𝜅 ≥ 0.) 

• The LCP (𝑞𝑞, 𝑀𝑀) has no solution. 
• The LCP (𝑞𝑞, 𝑀𝑀) has the solution 𝑦𝑦. 
Thus for “most” sufficient matrices we can find a solution (or a certificate that there is 
none), in polynomial time. It has been conjectured that in fact this holds for all sufficient 
matrices (Fukuda 2015). 

Unfortunately, no algorithm is known for finding out if 𝑀𝑀 is sufficient in polynomial 
time. Indeed, it has also been shown (Coxson 1994; Tseng 2000) that it is “co-NP 
complete” to test if 𝑀𝑀  is non-degenerate, a P-matrix, a P0-matrix, semi-monotone, 
strictly semi-monotone, column sufficient or row sufficient. This means that were a 
polynomial time (in 𝑇𝑇 ) algorithm available for these things then we would have a proof 
that P=NP. 

M. The augmented state-space representation of a pruned 
perturbation solution 

We seek to convert the model into the form: 
𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧�̃�𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡, 

𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡, 
where 𝔼𝔼𝑡𝑡−1𝜉𝜉𝑡𝑡 = 0, and where throughout, �s over variables denote the subset of state 
variables. We proceed by taking each order of approximation in turn. We assume that 
the original model has 𝑙𝑙  state variables. Of the assorted algorithms available for 
pruning, it appears that Lan and Meyer-Gohde’s (2013a) algorithm is the most accurate 
(Lan and Meyer-Gohde 2013b), and so both the discussion below, and the 
implementation in DynareOBC is based on this approach, however, everything we say 
would also go through with alternative pruning algorithms. 
Order 1 At order 1: 

𝑥𝑥𝑡𝑡
(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 
𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥𝑡𝑡

(1), 
so if we define: 

𝑧𝑧𝑡𝑡 ≔ 𝑥𝑥𝑡𝑡
(1), 𝑧𝑧�̃�𝑡 ≔ 𝑥𝑥�̃�𝑡

(1), 𝑜𝑜 ≔ 0, 𝑃𝑃 ≔ 𝛼𝛼, 𝑄𝑄 ≔ 𝛽𝛽0, 𝜉𝜉𝑡𝑡 ≔ 𝜀𝜀𝑡𝑡,
𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥, 𝑉𝑉 ≔ 𝐼𝐼𝑛𝑛, 

then we are done. 
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Order 2 At order 2: 
𝑥𝑥𝑡𝑡

(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1
(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(2) + 1
2 𝛽𝛽22�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� + 1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2), 
for some constant 𝑥𝑥(0). 

Now, note that: 
𝑥𝑥�̃�𝑡

(1) ⊗ 𝑥𝑥�̃�𝑡
(1) = ��̃�𝛼𝑥𝑥�̃�𝑡−1

(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡� ⊗ ��̃�𝛼𝑥𝑥�̃�𝑡−1
(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡� 

= �̃�𝛼𝑥𝑥�̃�𝑡−1
(1) ⊗ �̃�𝛼𝑥𝑥�̃�𝑡−1

(1) + �̃�𝛼𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝛽𝛽0̃𝜀𝜀𝑡𝑡 + 𝛽𝛽0̃𝜀𝜀𝑡𝑡 ⊗ �̃�𝛼𝑥𝑥�̃�𝑡−1

(1) + 𝛽𝛽0̃𝜀𝜀𝑡𝑡 ⊗ 𝛽𝛽0̃𝜀𝜀𝑡𝑡 
= (�̃�𝛼 ⊗ �̃�𝛼)�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + ��̃�𝛼 ⊗ 𝛽𝛽0̃��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� + �𝛽𝛽0̃ ⊗ �̃�𝛼��𝜀𝜀𝑡𝑡 ⊗ 𝑥𝑥�̃�𝑡−1
(1) �

+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 
= (�̃�𝛼 ⊗ �̃�𝛼)�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + ���̃�𝛼 ⊗ 𝛽𝛽0̃� + �𝛽𝛽0̃ ⊗ �̃�𝛼�𝐾𝐾𝑚𝑚,𝑙𝑙��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡�

+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 
= (�̃�𝛼 ⊗ �̃�𝛼)�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + ���̃�𝛼 ⊗ 𝛽𝛽0̃� + 𝐾𝐾𝑙𝑙,𝑙𝑙��̃�𝛼 ⊗ 𝛽𝛽0̃�𝐾𝐾𝑙𝑙,𝑚𝑚𝐾𝐾𝑚𝑚,𝑙𝑙��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡�

+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡) 
= (�̃�𝛼 ⊗ �̃�𝛼)�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙���̃�𝛼 ⊗ 𝛽𝛽0̃��𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡�
+ �𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

where 𝐾𝐾𝑙𝑙,𝑚𝑚 ∈ ℝ𝑙𝑙𝑚𝑚×𝑙𝑙𝑚𝑚 is the commutation matrix for 𝑙𝑙 × 𝑚𝑚 matrices, i.e. it is the unique 
matrix such that for all 𝐷𝐷 ∈ ℝ𝑙𝑙×𝑚𝑚, 𝐾𝐾𝑙𝑙,𝑚𝑚 vec 𝐷𝐷 = vec 𝐷𝐷′ (Magnus and Neudecker 1979). 
Thus, if we define: 

𝑧𝑧𝑡𝑡 ≔
⎣
⎢⎢
⎡ 𝑥𝑥𝑡𝑡

(1)

𝑥𝑥𝑡𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)⎦
⎥⎥
⎤

, 𝑧𝑧�̃�𝑡 ≔
⎣
⎢⎢
⎡ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥�̃�𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)⎦
⎥⎥
⎤
, 

𝑃𝑃 ≔
⎣
⎢⎢
⎡
𝛼𝛼 0 0
0 𝛼𝛼 1

2 𝛽𝛽22

0 0 �̃�𝛼 ⊗ �̃�𝛼⎦
⎥⎥
⎤

, 𝑄𝑄 ≔

⎣
⎢⎢
⎢
⎡
𝛽𝛽0 0 0

0 1
2 𝛽𝛽00 𝛽𝛽20

0 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙���̃�𝛼 ⊗ 𝛽𝛽0̃�⎦
⎥⎥
⎥
⎤
, 

𝜉𝜉𝑡𝑡 ≔
⎣
⎢⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥⎤ , 𝑜𝑜 ≔
⎣
⎢⎢
⎡

0
1
2 𝛽𝛽00 vec Σ

�𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� vec Σ⎦
⎥⎥
⎤
, 

𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0), 𝑉𝑉 ≔ [𝐼𝐼 𝐼𝐼 0], 
then we are done. 



Online Appendices: Page 23 of 29 

Order 3 At order 3: 
𝑥𝑥𝑡𝑡

(1) = 𝛼𝛼𝑥𝑥�̃�𝑡−1
(1) + 𝛽𝛽0𝜀𝜀𝑡𝑡, 

𝑥𝑥𝑡𝑡
(2) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(2) + 1
2 𝛽𝛽22�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) � + 𝛽𝛽20�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡� + 1
2 𝛽𝛽00(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡), 

𝑥𝑥𝑡𝑡
�1,𝜎𝜎2� = 𝛼𝛼𝑥𝑥�̃�𝑡−1

�1,𝜎𝜎2� + 1
2 𝛽𝛽𝜎𝜎2,0𝜀𝜀𝑡𝑡 + 1

2 𝛽𝛽𝜎𝜎2,1𝑥𝑥�̃�𝑡−1
(1) , 

𝑥𝑥𝑡𝑡
(3) = 𝛼𝛼𝑥𝑥�̃�𝑡−1

(3) + 1
6 𝛽𝛽333,1�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝑥𝑥�̃�𝑡−1

(1) � + 1
6 𝛽𝛽000(𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡)

+ 1
2 𝛽𝛽330,1�𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡� + 1

2 𝛽𝛽300�𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡�

+ 𝛽𝛽22�𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝑥𝑥�̃�𝑡−1

(1) � + 𝛽𝛽20�𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝜀𝜀𝑡𝑡�, 

𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0) + 𝑥𝑥𝑡𝑡
(1) + 𝑥𝑥𝑡𝑡

(2) + 𝑥𝑥𝑡𝑡
�1,𝜎𝜎2� + 𝑥𝑥𝑡𝑡

(3), 
for the same constant 𝑥𝑥(0) as at order 2, providing the shocks have zero skewness (e.g. 
they are normally distributed). By similar calculations to those at second order, we then 
have that if we define: 

 𝑧𝑧𝑡𝑡
3 ≔ 𝔼𝔼𝑠𝑠

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥𝑡𝑡

(1)

𝑥𝑥𝑡𝑡
(2)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥𝑡𝑡
�1,𝜎𝜎2�

𝑥𝑥𝑡𝑡
(3)

𝑥𝑥�̃�𝑡
(2) ⊗ 𝑥𝑥�̃�𝑡

(1)

𝑥𝑥�̃�𝑡
(1) ⊗ 𝑥𝑥�̃�𝑡

(1) ⊗ 𝑥𝑥�̃�𝑡
(1)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,   

𝑃𝑃 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛼𝛼 0 0 0 0 0 0
0 𝛼𝛼 1

2 𝛽𝛽22 0 0 0 0
0 0 �̃�𝛼 ⊗ �̃�𝛼 0 0 0 0

1
2 𝛽𝛽𝜎𝜎2,1 0 0 𝛼𝛼 0 0 0

1
2 𝛽𝛽300(𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 𝛼𝛼 𝛽𝛽22

1
6 𝛽𝛽333,1

�𝛽𝛽2̃0 ⊗ 𝛽𝛽0̃ + 1
2 𝐾𝐾𝑙𝑙,𝑙𝑙��̃�𝛼 ⊗ 𝛽𝛽0̃0�� (𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 0 �̃�𝛼 ⊗ �̃�𝛼 1

2 𝛽𝛽2̃2 ⊗ �̃�𝛼

��𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� ⊗ 𝐼𝐼𝑙𝑙 + 𝐾𝐾𝑙𝑙2,𝑙𝑙� ��̃�𝛼 ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃�(𝐼𝐼𝑙𝑙 ⊗ vec Σ) 0 0 0 0 0 �̃�𝛼 ⊗ �̃�𝛼 ⊗ �̃�𝛼⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄11 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝛽𝛽0 0 0

0 1
2 𝛽𝛽00 𝛽𝛽20

0 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙���̃�𝛼 ⊗ 𝛽𝛽0̃�
1
2 𝛽𝛽𝜎𝜎2,0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄22 ≔

⎣
⎢
⎢
⎢
⎢
⎡ 𝛽𝛽20

1
2 𝛽𝛽330,1

1
2 𝛽𝛽300

1
6 𝛽𝛽000

�̃�𝛼 ⊗ 𝛽𝛽0̃
1
2 𝛽𝛽2̃2 ⊗ 𝛽𝛽0̃ + �𝛽𝛽2̃0 ⊗ �̃�𝛼��𝐼𝐼𝑙𝑙 ⊗ 𝐾𝐾𝑚𝑚,𝑙𝑙� 𝛽𝛽2̃0 ⊗ 𝛽𝛽0̃ + 1

2 𝐾𝐾𝑙𝑙,𝑙𝑙��̃�𝛼 ⊗ 𝛽𝛽0̃0� 1
2 𝛽𝛽0̃0 ⊗ 𝛽𝛽0̃

0 �𝐼𝐼𝑙𝑙 ⊗ �𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� + 𝐾𝐾𝑙𝑙,𝑙𝑙2���̃�𝛼 ⊗ �̃�𝛼 ⊗ 𝛽𝛽0̃� ��𝐼𝐼𝑙𝑙2 + 𝐾𝐾𝑙𝑙,𝑙𝑙� ⊗ 𝐼𝐼𝑙𝑙 + 𝐾𝐾𝑙𝑙2,𝑙𝑙� ��̃�𝛼 ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃ ⊗ 𝛽𝛽0̃⎦
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄 ≔ �𝑄𝑄11 0
0 𝑄𝑄22

�, 

𝜉𝜉𝑡𝑡 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(2) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝑥𝑥�̃�𝑡−1

(1) ⊗ 𝜀𝜀𝑡𝑡

𝑥𝑥�̃�𝑡−1
(1) ⊗ (𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ)

𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑜𝑜 ≔

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
1
2 𝛽𝛽00 vec Σ

�𝛽𝛽0̃ ⊗ 𝛽𝛽0̃� vec Σ
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑢𝑢 ≔ 𝜇𝜇𝑥𝑥 + 𝑥𝑥(0), 𝑉𝑉 ≔ [𝐼𝐼 𝐼𝐼 0 𝐼𝐼 𝐼𝐼 0 0], 

then again we are done. 
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N. The conditional covariance of future variables under a pruned 
perturbation solution 

First, suppose that: 
𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧𝑡𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡 

where 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑘𝑘 = 0 for 𝑘𝑘 > 0. Then: 

𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+𝑘𝑘 = � 𝑃𝑃𝑗𝑗𝑜𝑜
𝑘𝑘−1

𝑗𝑗=0
+ 𝑃𝑃𝑘𝑘𝑧𝑧𝑡𝑡, 

so: 

𝑧𝑧𝑡𝑡+𝑘𝑘 − 𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+𝑘𝑘 = � 𝑃𝑃𝑘𝑘−𝑗𝑗𝑄𝑄𝜉𝜉𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1
. 

Consequently: 

cov𝑡𝑡(𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏) = � � 𝑃𝑃𝑎𝑎−𝑖𝑖𝑄𝑄�𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ �𝑄𝑄′𝑃𝑃′𝑏𝑏−𝑗𝑗

𝑏𝑏

𝑗𝑗=1

𝑎𝑎

𝑖𝑖=1
 

If 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ = 0 for 𝑖𝑖 ≠ 𝑗𝑗, then this simplifies to: 

cov𝑡𝑡(𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏)

= 𝑃𝑃𝑎𝑎−min{𝑎𝑎,𝑏𝑏} � � 𝑃𝑃min{𝑎𝑎,𝑏𝑏}−𝑖𝑖𝑄𝑄�𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑖𝑖
′ �𝑄𝑄′𝑃𝑃′min{𝑎𝑎,𝑏𝑏}−𝑖𝑖

min{𝑎𝑎,𝑏𝑏}

𝑖𝑖=1
� 𝑃𝑃′𝑏𝑏−min{𝑎𝑎,𝑏𝑏}. 

Now, in the previous section of these appendices (M), we showed that at order 1, 2 
and 3 the pruned perturbation solutions may be represented in the form: 

𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧�̃�𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡 
where 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑘𝑘 = 0 for 𝑘𝑘 > 0. It is trivial to add zero columns to 𝑃𝑃 so that we instead 
have: 

𝑧𝑧𝑡𝑡 = 𝑜𝑜 + 𝑃𝑃𝑧𝑧𝑡𝑡−1 + 𝑄𝑄𝜉𝜉𝑡𝑡, 
thus, we just need to evaluate 𝔼𝔼𝑡𝑡�𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗

′ � in order to have a closed form expression 
for cov𝑡𝑡(𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏), then from this and the fact that 𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡, we would have that: 

cov𝑡𝑡(𝑥𝑥𝑡𝑡+𝑎𝑎, 𝑥𝑥𝑡𝑡+𝑏𝑏) = cov𝑡𝑡(𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑢𝑢 + 𝑉𝑉𝑧𝑧𝑡𝑡+𝑏𝑏) = 𝑉𝑉 cov𝑡𝑡(𝑧𝑧𝑡𝑡+𝑎𝑎, 𝑧𝑧𝑡𝑡+𝑏𝑏) 𝑉𝑉 ′. 
We now proceed to evaluate 𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗

′  for orders 1 and 2. We skip the third order case 
as a second order approximation to the conditional covariance is normally sufficient for 
reasonable accuracy, and as the third order conditional covariance is very slow to 
calculate. 
Order 1 At order 1, 𝜉𝜉𝑡𝑡 ≔ 𝜀𝜀𝑡𝑡, thus: 

𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗
′ = �Σ if 𝑖𝑖 = 𝑗𝑗

0 if 𝑖𝑖 ≠ 𝑗𝑗. 

Order 2 At order 2: 

𝜉𝜉𝑡𝑡 ≔
⎣
⎢⎡

𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥⎤, 
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thus: 
𝔼𝔼𝑡𝑡𝜉𝜉𝑡𝑡+𝑖𝑖𝜉𝜉𝑡𝑡+𝑗𝑗

′ = 0 if 𝑖𝑖 ≠ 𝑗𝑗, 
and by theorem 4.3 of Magnus and Neudecker (1979): 

𝔼𝔼𝑠𝑠𝜉𝜉𝑡𝑡𝜉𝜉𝑡𝑡
′ = 𝔼𝔼𝑠𝑠

⎣
⎢
⎡

1 ⊗ 𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡 ⊗ 𝜀𝜀𝑡𝑡 − vec Σ

𝑥𝑥�̃�𝑡−1
(1) ⊗ 𝜀𝜀𝑡𝑡 ⎦

⎥
⎤ �1 ⊗ 𝜀𝜀𝑡𝑡

′ 𝜀𝜀𝑡𝑡
′ ⊗ 𝜀𝜀𝑡𝑡

′ − (vec Σ)′ 𝑥𝑥�̃�𝑡−1
(1)′

⊗ 𝜀𝜀𝑡𝑡
′� 

=
⎣
⎢⎢
⎡ Σ 0 𝔼𝔼𝑠𝑠𝑥𝑥�̃�𝑡−1

(1)′ ⊗ Σ
0 �𝐼𝐼𝑚𝑚2 + 𝐾𝐾𝑚𝑚,𝑚𝑚�(Σ ⊗ Σ) 0

𝔼𝔼𝑠𝑠𝑥𝑥�̃�𝑡−1
(1) ⊗ Σ 0 𝔼𝔼𝑠𝑠�𝑥𝑥�̃�𝑡−1

(1) 𝑥𝑥�̃�𝑡−1
(1)′ � ⊗ Σ⎦

⎥⎥
⎤
. 

O. Cubature methods 

Degree 3 monomial rule  The equal weight degree 3 monomial cubature rule with 2𝑆𝑆 ̂ +
1 nodes rule exactly integrates all degree 3 monomials in the components of 𝜈𝜈. While 
a third order approximation to the cumulated news shocks, 𝑦𝑦, as a function of 𝜁𝜁 may do 
a poor job at capturing this highly non-linear (and even non-differentiable) mapping, in 
practice the approximation to the integral is often surprisingly accurate. This is in a 
large part due to the robustness of the integration rule which stems from its equal, 
positive weights. All known higher degree integration rules that do not use more than 
polynomial in 𝑆𝑆  ̂ nodes also feature negative weights on at least some nodes (Cools 
2003), which means that their result is not guaranteed to lie within the convex hull of 
the source evaluations, and, in this case in which we are integrating a positive function 
(𝑦𝑦), it further means the result can have the wrong sign. 
Genz and Keister (1996) rules  The Genz and Keister (1996) rules allow one to choose 
the maximum degree of monomial that should be integrated exactly, up to a maximum 
order of 51 . The number of points used is Ο�𝑆𝑆�̂�𝐾� , where 2𝐾𝐾 + 1  is the degree of 
monomial that is integrated exactly. When 𝐾𝐾 > 0 and 𝑆𝑆 ̂ > 1, the rule features negative 
weights on at least one node, which means it is susceptible to the problems mentioned 
above. However, it has a few points in its favour. Firstly, by using negative weights, the 
rule is able to ensure that the maximum over the absolute vectors of integration points 
is independent of 𝑆𝑆 .̂ This contrasts with the aforementioned rule in which the higher is 
𝑆𝑆 ,̂ the further into the tails of the distribution one has to evaluate the integrand. Given 
the extreme non-linearity of the integrand, evaluating far into the tails can lead the equal 
weighted integration rule to produce a heavily upwards biased estimate of the integral. 
Secondly, by using a higher degree rule, we can generally obtain a better approximation 
to the integrand, despite its non-differentiability. Finally, the Genz and Keister (1996) 
rules are nested, which means that we can use an adaptive integration degree without 
wasting evaluations, continuing to increase the degree until approximate convergence. 
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In practice, the results of these rules often repeatedly flip from biased down to biased 
up as the degree increases, due to the discontinuities. To lessen this, DynareOBC gives 
the option of averaging integral estimates of adjacent orders, which still integrates 
polynomials of the lower of the two orders exactly.  
Quasi Monte Carlo The final integration method we consider is quasi Monte Carlo, 
generating points from a Sobol sequence (Sobol 1967). Given that the functions we are 
integrating are absolutely continuous (as they are piecewise polynomial, with a finite 
number of manifolds of non-differentiability), quasi Monte Carlo with 21+𝑙𝑙 − 1 draws 
will produce an error that decays as Ο �𝑙𝑙𝑆𝑆̂

2𝑙𝑙�. With the Sobol sequence, the choice of 

21+𝑙𝑙 − 1 integration points for some 𝑙𝑙 ∈ ℕ also ensures that the points are exactly mean 
zero, hopefully lessening overall bias. However, on functions that are well approximated 
by a polynomial, quasi Monte Carlo will generally require far more evaluations of the 
integrand for a similar accuracy than the Genz and Keister (1996) rules would. Which 
dominates in practice will depend on the precise integrand, which in turn will depend 
on the model and its current state. At times where the bound is either highly likely to 
bind or highly likely not to bind, whatever future shocks hit, it is likely that the Genz 
and Keister (1996) rules will dominate, however, at times when the bound is only 
binding with moderate probability, quasi Monte Carlo’s “dumb” approach may give it 
better performance. 

P. Global solution procedure for the capital constrained model 

The value function is: 

𝑉𝑉(𝐾𝐾, 𝐴𝐴) = max
𝐶𝐶,𝐿𝐿 s.t.

𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿1−𝛼𝛼−𝐶𝐶≥𝜃𝜃𝐾𝐾

�log 𝐶𝐶 − 𝐿𝐿1+𝜈𝜈

1 + 𝜈𝜈 + 𝛽𝛽𝔼𝔼𝑉𝑉�𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿1−𝛼𝛼 − 𝐶𝐶, 𝐴𝐴𝜌𝜌 exp 𝜀𝜀�� 

= max
𝐶𝐶 s.t.

�(𝐴𝐴𝐾𝐾𝛼𝛼)1+𝜈𝜈�1−𝛼𝛼
𝐶𝐶 �

1−𝛼𝛼
�

1
𝜈𝜈+𝛼𝛼

−𝐶𝐶≥𝜃𝜃𝐾𝐾
⎣
⎢
⎡log 𝐶𝐶 − 1

1 + 𝜈𝜈 �1 − 𝛼𝛼
𝐶𝐶 𝐴𝐴𝐾𝐾𝛼𝛼�

1+𝜈𝜈
𝜈𝜈+𝛼𝛼
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⎞
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where the second line comes from substituting in the labour first order condition. 
We construct a uniform rectangular grid on log 𝐴𝐴  and log 𝐾𝐾  as follows. For both 

variables, the grid is centred on the model’s non-stochastic steady-state. For 
productivity, the grid extends to ±4 times the standard deviation of log 𝐴𝐴𝑡𝑡, which covers 
more than 99.99%  of its stationary distribution. For capital, the grid extends to ±16 
times the standard deviation of log 𝐾𝐾𝑡𝑡 in the model without bounds, which also covers 
(a lot ) more than 99.99%  of its stationary distribution in the model with bounds. 
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Furthermore, it is wide enough to cover the area in which the value function is highly 
curved, as it goes from increasing to decreasing. The grid has 256  points along the 
productivity axis, and 1024 points along the capital axis, making for a total of 262,144 
points. 

We use linear interpolation/extrapolation for points off the grid. Then, due to 
piecewise linearity of the integrand in the value function, and the Gaussianity of 𝜀𝜀 , 
integration can be performed exactly. For speed, we precompute the associated weights 
at each productivity level, so exact integration just requires a dot product between the 
weights, and the value function interpolated to the future capital level. 

We initialize the grid to the exact solution in the absence of bounds, e.g.: 
𝑉𝑉 = 𝐹𝐹 + 𝐺𝐺 log 𝐾𝐾 + 𝐻𝐻 log 𝐴𝐴, 

where: 

𝐹𝐹 = log(1 − 𝛼𝛼𝛽𝛽)
1 − 𝛽𝛽 + 1 − 𝛼𝛼

(1 − 𝛼𝛼𝛽𝛽)(1 − 𝛽𝛽)(1 + 𝜈𝜈) �log � 1 − 𝛼𝛼
1 − 𝛼𝛼𝛽𝛽� − 1� + 𝛼𝛼𝛽𝛽 log 𝛼𝛼𝛽𝛽

(1 − 𝛼𝛼𝛽𝛽)(1 − 𝛽𝛽), 

𝐺𝐺 = 𝛼𝛼
1 − 𝛼𝛼𝛽𝛽, 

𝐻𝐻 = 1
(1 − 𝛼𝛼𝛽𝛽)(1 − 𝛽𝛽𝜌𝜌). 

To facilitate solving with the bound, in the first iteration, we set 𝜃𝜃 = 0, and then we 
increase 𝜃𝜃 by 0.005 with each iteration until it gets to 0.99, in order to “homotope” from 
the solution without the bound to the solution with the bound at the correct level. We 
then continue with conventional fixed point iterations until the maximum absolute 
change in the value function over the grid ceases to decrease. We report the penultimate 
value function, i.e. we discard the final one which was a bigger step away. Within these 
iterations, at each grid node, we first solve for the 𝐶𝐶  at which the constraint binds 
exactly, then maximise 𝐶𝐶 over the interval from 0 to the found bound. Both procedures 
will deliver a result accurate to somewhere (roughly) between 10−8 and 10−16. 

As one indication of accuracy, the final value function iteration step changed the value 
function by at most 3.91 × 10−8  at all grid points, and the implied policy function 
changed by at most 2.60 × 10−7 at all grid points. By way of comparison, when the same 
algorithm was run on the model without a bound, the algorithm made two steps (the 
minimum possible), the last of which changed the value function by at most 5.95 ×
10−12 and which changed the policy function by at most 2.89 × 10−7. 

In Figure 6 and Figure 7 we plot the value and policy functions in terms of log 𝐾𝐾 for 
a variety of productivity levels, including both the highest and lowest productivities on 
the grid. These illustrate the extent of the departure from the model without bounds. 
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Figure 6: Value function 

 

 
Figure 7: Policy function 

Q. Further details on the DynareOBC toolkit 

Code implementing all of the algorithms discussed here is contained in the author’s 
“DynareOBC” toolkit which is a suite of MATLAB files designed to augment the 
abilities of Dynare (Adjemian et al. 2011).  The toolkit may be freely downloaded from 
http://github.org/tholden/dynareOBC, and this site also contains complete 
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documentation for its assorted options.44 To use it, one merely has to include a “max”, 
“min” or “abs” in the MOD file describing the DSGE model to be simulated, and then 
to invoke DynareOBC with the MATLAB command “dynareOBC 
ModFileName.MOD”. 

Internally, DynareOBC uses the “YALMIP” (Löfberg 2004) MATLAB toolkit as an 
interface to a wide variety of open source and commercial mixed integer linear 
programming solvers. The distribution of DynareOBC comes with a variety of open 
source solvers, so DynareOBC is certainly not dependent on any particular commercial 
packages (other than MATLAB itself). DynareOBC also attempts to obtain a parametric 
solution to the LCP (𝑞𝑞, 𝑀𝑀) for 𝑞𝑞 which only violate the bound in at most the first few 
periods, using the MPT toolkit (Herceg et al. 2013), which in turn uses an algorithm 
due to Jones and Morrari (2006). The resulting parametric solution takes the form of a 
compiled MEX function, which, when passed a 𝑞𝑞, returns the 𝑦𝑦 that solves the LCP. 
This reduces the number of times the LCP needs to be solved in inner loops, increasing 
performance. Furthermore, DynareOBC includes efficient code for testing whether 𝑀𝑀 
is a P-matrix, based on an algorithm of Tsatsomeros and Li (2000), and can also test if 
𝑀𝑀 is an S-matrix or (strictly) semi-monotone. Additionally, DynareOBC contains code 
for facilitating the calculation of Jin and Judd (2002) style accuracy checks. Thus, 
DynareOBC functions as an easy to use, one stop shop for all queries one might have 
of a model with OBCs. 

 

                                                 
44 A PDF of the toolkit’s documentation is available from: https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf. 

https://github.com/tholden/dynareOBC/raw/master/ReadMe.pdf
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